CGE_2024v12n3

Cancer Genetics and Epigenetics 2024, Vol.12, No.3, 144-156 http://medscipublisher.com/index.php/cge 155 References Ahmed H., Hamad S., Shedeed H., and Hussein A., 2022, Enhanced deep learning model for personalized cancer treatment, IEEE Access, 10: 106050-106058. https://doi.org/10.1109/ACCESS.2022.3209285 Berlow N., Rikhi R., Geltzeiler M., Abraham J., Svalina M., Davis L., Wise E., Mancini M., Noujaim J., Mansoor A., Quist M., Matlock K., Goros M., Hernandez B., Doung Y., Thway K., Tsukahara T., Nishio J., Huang E., Airhart S., Bult C., Gandour-Edwards R., Maki R., Jones R., Michalek J., Milovancev M., Ghosh S., Pal R., and Keller C., 2018, Probabilistic modeling of personalized drug combinations from integrated chemical screen and molecular data in sarcoma, BMC Cancer, 19: 593. https://doi.org/10.1186/s12885-019-5681-6 Boehm K., Khosravi P., Vanguri R., Gao J., and Shah S., 2021, Harnessing multimodal data integration to advance precision oncology, Nature Reviews Cancer, 22: 114-126. https://doi.org/10.1038/s41568-021-00408-3 Bulen B., Khazanov N., Lamb L., Hovelson D., Kwiatkowski K., Johnson D., Rhodes D., and Tomlins S., 2023, Validation of an integrative pan-solid tumor predictor of pembrolizumab monotherapy benefit, Cancer Research, 83(7): 43-48. https://doi.org/10.1158/1538-7445.am2023-4348 Chung W., Chen S., Ko T., Lin Y., Lin S., Lo Y., Tseng S., and Yu C., 2022, An integrative clinical model for the prediction of pathological complete response in patients with operable stage II and stage III triple-negative breast cancer receiving neoadjuvant chemotherapy, Cancers, 14(17): 4170. https://doi.org/10.3390/cancers14174170 Davis A., Iams W., Chan D., Oh M., Lentz R., Peterman N., Robertson A., Shah A., Srivas R., Wilson T., Lambert N., George P., Wong B., Wood H., Close J., Tezcan A., Nesmith K., Tezcan H., and Chae Y., 2019, Early assessment of molecular progression and response by whole-genome circulating tumor DNA in advanced solid tumors, Molecular Cancer Therapeutics, 19: 1486-1496. https://doi.org/10.1158/1535-7163.MCT-19-1060 Doudican N., Kumar A., Singh N., Nair P., Lala D., Basu K., Talawdekar A., Sultana Z., Tiwari K., Tyagi A., Abbasi T., Vali S., Vij R., Fiala M., King J., Perle M., and Mazumder A., 2015, Personalization of cancer treatment using predictive simulation, Journal of Translational Medicine, 13: 43. https://doi.org/10.1186/s12967-015-0399-y Fan J., Slowikowski K., and Zhang F., 2020, Single-cell transcriptomics in cancer: computational challenges and opportunities, Experimental & Molecular Medicine, 52: 1452-1465. https://doi.org/10.1038/s12276-020-0422-0 Gambardella V., Tarazona N., Cejalvo J., Lombardi P., Huerta M., Roselló S., Fleitas T., Roda D., and Cervantes A., 2020, Personalized medicine: recent progress in cancer therapy, Cancers, 12(4): 1009. https://doi.org/10.3390/cancers12041009 Halasz M., Kholodenko B., Kolch W., and Santra T., 2016, Integrating network reconstruction with mechanistic modeling to predict cancer therapies, Science Signaling, 9: ra114-ra114. https://doi.org/10.1126/scisignal.aae0535 Levitin H., Yuan J., and Sims P., 2018, Single-Cell transcriptomic analysis of tumor heterogeneity, Trends in Cancer, 4(4): 264-268. https://doi.org/10.1016/j.trecan.2018.02.003 Li C., Sun Y.D., Yu G.Y., Cui J.R., Lou Z., Zhang H., Huang Y., Bai C.G., Deng L.L., Liu P., Zheng K., Wang Y.H., Wang Q.Q., Li Q.R., Wu Q.Q., Liu Q., Shyr Y., Li Y.X., Chen L.N., Wu J.R., Zhang W., and Zeng R., 2020, Integrated omics of metastatic colorectal cancer, Cancer Cell, 38(5): 734-747. https://doi.org/10.1016/j.ccell.2020.08.002 Liu Q., Li G., and Baladandayuthapani V., 2023, Pan-Cancer drug response prediction using integrative principal component regression, bioRxiv, 10(5): 560366. https://doi.org/10.1101/2023.10.03.560366 Majumder B., Baraneedharan U., Thiyagarajan S., Radhakrishnan P., Narasimhan H., Dhandapani M., Brijwani N., Pinto D., Prasath A., Shanthappa B., Thayakumar A., Surendran R., Babu G., Shenoy A., Kuriakose M., Bergthold G., Horowitz P., Loda M., Beroukhim R., Agarwal S., Sengupta S., Sundaram M., and Majumder P., 2015, Predicting clinical response to anticancer drugs using an ex vivo platform that captures tumour heterogeneity, Nature Communications, 6: 6169. https://doi.org/10.1038/ncomms7169 Mathur D., Taylor B., Chatila W., Schultz N., Razavi P., and Xavier J., 2020, Abstract PO-114: mathematical modeling of tumor heterogeneity to optimize treatment scheduling and delay the evolution of resistance, Cancer Research, 80(21): PO-114. https://doi.org/10.1158/1538-7445.tumhet2020-po-114 Pender A., Titmuss E., Pleasance E., Fan K., Pearson H., Brown S., Grisdale C., Topham J., Shen Y., Bonakdar M., Taylor G., Williamson L., Mungall K., Chuah E., Mungall A., Moore R., Lavoie J., Yip S., Lim H., Renouf D., Sun S., Holt R., Jones S., Marra M., and Laskin J., 2020, Genome and transcriptome biomarkers of response to immune checkpoint inhibitors in advanced solid tumors, Clinical Cancer Research, 27(1): 202-212. https://doi.org/10.1158/1078-0432.CCR-20-1163 Rahman M., Ambler G., Choodari-Oskooei B., and Omar R., 2017, Review and evaluation of performance measures for survival prediction models in external validation settings, BMC Medical Research Methodology, 17: 60. https://doi.org/10.1186/s12874-017-0336-2 Rodin A., Uduman M., Lee P., Marincola F., and Branciamore S., 2022, Editorial: systems biology methods in computational immuno-oncology, Frontiers in Genetics, 13:885252. https://doi.org/10.3389/fgene.2022.885252

RkJQdWJsaXNoZXIy MjQ4ODYzNQ==