CGE_2024v12n2

Cancer Genetics and Epigenetics 2024, Vol.12, No.2, 79-87 http://medscipublisher.com/index.php/cge 85 generalizability of findings and contribute to global health equity. In conclusion, while significant progress has been made, continued efforts in research, clinical application, and policy development are essential to fully realize the potential of WGS in improving prostate cancer outcomes. Acknowledgments We would like to express our gratitude to the two anonymous peer researchers for their constructive suggestions on our manuscript. Conflict of Interest Disclosure The author affirms that this research was conducted without any commercial or financial relationships that could be construed as a potential conflict of interest. References Abida W., Armenia J., Gopalan A., Brennan R., Walsh M., Barron D., Danila D., Rathkopf D., Morris M., Slovin S., McLaughlin B., Curtis K., Hyman D., Durack J., Solomon S., Arcila M., Zehir A., Syed A., Gao J., Chakravarty D., Vargas H., Robson M., Joseph V., Offit K., Donoghue M., Abeshouse A., Kundra R., Heins Z., Penson A., Harris C., Taylor B., Ladanyi M., Mandelker D., Zhang L., Reuter V., Kantoff P., Solit D., Berger M., Sawyers C., Schultz N., and Scher H., 2017, Prospective genomic profiling of prostate cancer across disease states reveals germline and somatic alterations that may affect clinical decision making, JCO Precision Oncology, 1: 1-16. https://doi.org/10.1200/PO.17.00029 Armstrong A., Li X., Tucker M., Li S., Mu X., Eng K., Sboner A., Rubin M., and Gerstein M., 2021, Molecular medicine tumor board: whole-genome sequencing to inform on personalized medicine for a man with advanced prostate cancer, Prostate Cancer and Prostatic Diseases, 24: 786-793. https://doi.org/10.1038/s41391-021-00324-5 Baca S., and Garraway L., 2012, The genomic landscape of prostate cancer, Frontiers in Endocrinology, 3: 69. https://doi.org/10.3389/fendo.2012.00069 Beltran H., Eng K., Mosquera J., Sigaras A., Romanel A., Rennert H., Kossai M., Pauli C., Faltas B., Fontugne J., Park K., Banfelder J., Prandi D., Madhukar N., Zhang T., Padilla J., Greco N., McNary T., Herrscher E., Wilkes D., Macdonald T., Xue H., Vacic V., Emde A., Oschwald D., Tan A., Chen Z., Collins C., Gleave M., Wang Y., Chakravarty D., Schiffman M., Kim R., Campagne F., Robinson B., Nanus D., Tagawa S., Xiang J., Smogorzewska A., Demichelis F., Rickman D., Sboner A., Elemento O., and Rubin M., 2015, Whole-exome sequencing of metastatic cancer and biomarkers of treatment response, JAMA Oncology, 1(4): 466-474. https://doi.org/10.1001/jamaoncol.2015.1313 Beltran H., Yelensky R., Frampton G., Park K., Downing S., Macdonald T., Jarosz M., Lipson D., Tagawa S., Nanus D., Stephens P., Mosquera J., Cronin M., and Rubin M., 2013, Targeted next-generation sequencing of advanced prostate cancer identifies potential therapeutic targets and disease heterogeneity, European Urology, 63(5): 920-926. https://doi.org/10.1016/j.eururo.2012.08.053 Bewicke-Copley F., Kumar E., Palladino G., Korfi K., and Wang J., 2019, Applications and analysis of targeted genomic sequencing in cancer studies, Computational and Structural Biotechnology Journal, 17: 1348-1359. https://doi.org/10.1016/j.csbj.2019.10.004 Borad M., Egan J., Champion M., Hunt K., McWilliams R., McCullough A., Aldrich J., Nasser S., Liang W., Barrett M., Craig D., Ramanathan R., Carpten J., Stewart A., and Bryce A., 2013, Abstract CT112: Implementation of CLIA enabled integrated whole genome (WGS)/exome (WES)/transcriptome (RNAseq) next-gen sequencing to identify therapeutically relevant targets in advanced cancer patients, Molecular Cancer Therapeutics, 75(15_Supplement): CT112. https://doi.org/10.1158/1535-7163.TARG-13-C66 Ciccarese C., Massari F., Iacovelli R., Fiorentino M., Montironi R., Nunno V., Giunchi F., Brunelli M., and Tortora G., 2017, Prostate cancer heterogeneity: Discovering novel molecular targets for therapy, Cancer Treatment Reviews, 54: 68-73. https://doi.org/10.1016/j.ctrv.2017.02.001 Crumbaker M., Chan E., Gong T., Corcoran N., Jaratlerdsiri W., Lyons R., Haynes A., Kulidjian A., Kalsbeek A., Petersen D., Stricker P., Jamieson C., Croucher P., Hovens C., Joshua A., and Hayes V., 2020, The impact of whole genome data on therapeutic decision-making in metastatic prostate cancer: a retrospective analysis, Cancers, 12(5): 1178. https://doi.org/10.3390/cancers12051178 Gudmundsson J., Sulem P., Gudbjartsson D., Másson G., Agnarsson B., Benediktsdottir K., Sigurdsson A., Magnusson O., Gudjonsson S., Magnúsdóttir D., Johannsdottir H., Helgadottir H., Stacey S., Jonasdottir A., Olafsdottir S., Thorleifsson G., Jónasson J., Tryggvadottir L., Navarrete S., Fuertes F., Helfand B., Hu Q., Csiki I., Mateș I., Jinga V., Aben K., Oort I., Vermeulen S., Donovan J., Hamdy F., Ng C., Chiu P., Lau K., Ng M., Gulcher J., Kong A., Catalona W., Mayordomo J., Einarsson G., Barkardottir R., Jonsson E., Mates D., Neal D., Kiemeney L., Thorsteinsdóttir U., Rafnar T., and Stefánsson K., 2012, A study based on whole-genome sequencing yields a rare variant at 8q24 associated with prostate cancer, Nature Genetics, 44: 1326-1329. https://doi.org/10.1038/ng.2437 Herberts C., Annala M., Sipola J., Ng S., Chen X., Nurminen A., Korhonen O., Munzur A., Beja K., Schönlau E., Bernales C., Ritch E., Bacon J., Lack N., Nykter M., Aggarwal R., Small E., Gleave M., Quigley D., Feng F., Chi K., and Wyatt A., 2022, Abstract 3625: clonal architecture and evolution of treatment-resistant prostate cancer via deep whole-genome ctDNA sequencing, Cancer Research, 82(12_Supplement): 3625-3625. https://doi.org/10.1158/1538-7445.am2022-3625

RkJQdWJsaXNoZXIy MjQ4ODYzNQ==