MPR_2025v15n4

Medicinal Plant Research 2025, Vol.15, No.4, 161-168 http://hortherbpublisher.com/index.php/mpr 167 References Attri V., 2023, Effect of pre-sowing treatments on growth attributes of Sapindus mukorossi Gaertn., Indian Forester, 149(12): 1155-1160. https://doi.org/10.36808/if/2023/v149i12/169387 Begum K., Shammi M., Hasan N., Appiah K., and Fujii Y., 2019, Evaluation of potential volatile allelopathic plants from Bangladesh, with Sapindus mukorossi as a candidate species, Agronomy, 10(1): 49. https://doi.org/10.3390/agronomy10010049 Chen C., Li R., Li D., Shen F., Xiao G., and Zhou J., 2021, Extraction and purification of saponins from Sapindus mukorossi, New Journal of Chemistry, 45(2): 952-960. https://doi.org/10.1039/d0nj04047a Gao Y., Zhao G., Xu Y., Hao Y., Zhao T., Jia L., and Chen Z., 2023, Karyotype analysis and genome size estimation of Sapindus mukorossi Gaertn., an economically important tree species in China, Botany Letters, 171(2): 116-124. https://doi.org/10.1080/23818107.2023.2244179 Gupta S., Kaur R., Sharma T., Bhardwaj A., Sharma S., Sohal J., and Singh S., 2023, Multi-omics approaches for understanding stressor-induced physiological changes in plants: An updated overview, Physiological and Molecular Plant Pathology, 127: 102047. https://doi.org/10.1016/j.pmpp.2023.102047 Kheloufi A., Mansouri L., Goudja T., and Boukhecha M., 2024, Enhancing germination of Sapindus mukorossi (Gaertn.) through dormancy-breaking treatments, Die Bodenkultur: Journal of Land Management, Food and Environment, 75(2): 105-113. https://doi.org/10.2478/boku-2024-0010 Li Y., Li X., Li Q., and Yue M., 2021, Aqueous extract of fallen Indian soapberry (Sapindus mukorossi) leaves decreased seed germination but increased seedling growth of four vegetables, Applied Ecology and Environmental Research, 19(1): 331-347. https://doi.org/10.15666/AEER/1901_331347 Liu J., Wang D., Yan X., Jia L., Chen N., Liu J., Zhao P., Zhou L., and Cao Q., 2024a, Effect of nitrogen, phosphorus and potassium fertilization management on soil properties and leaf traits and yield of Sapindus mukorossi, Frontiers in Plant Science, 15: 1300683. https://doi.org/10.3389/fpls.2024.1300683 Liu J., Xu Y., Sun C., Wang X., Zheng Y., Shi S., Chen Z., He Q., Weng X., and Jia L., 2022, Distinct ecological habits and habitat responses to future climate change in three East and Southeast Asian Sapindus species, Forest Ecology and Management, 507: 119982. https://doi.org/10.1016/j.foreco.2021.119982 Liu J., Zhou L., Wang D., Gong Y., Yan X., Cao Q., Wu S., Weng J., Zhang G., and Jia L., 2024b, The effect of balanced N, P and K fertilization on fine root traits and soil properties in Sapindus mukorossi, Forests, 15(1): 94. https://doi.org/10.3390/f15010094 Mondal S., Seelam R., Mondal B., and Jespersen D., 2024, Understanding abiotic stress tolerance mechanisms in non-food grass species through omics approaches, Plant Stress, 8: 100516. https://doi.org/10.1016/j.stress.2024.100516 Razzaq M., Aleem M., Mansoor S., Khan M., Rauf S., Iqbal S., and Siddique K., 2021, Omics and CRISPR-Cas9 approaches for molecular insight, functional gene analysis, and stress tolerance development in crops, International Journal of Molecular Sciences, 22(3): 1292. https://doi.org/10.3390/ijms22031292 Roychowdhury R., Das S., Gupta A., Parihar P., Chandrasekhar K., Sarker U., Kumar A., Ramrao D., and Sudhakar C., 2023, Multi-omics pipeline and omics-integration approach to decipher plant’s abiotic stress tolerance responses, Genes, 14(6): 1281. https://doi.org/10.3390/genes14061281 Sahito Z., Zehra A., Yu S., Chen S., He Z., and Yang X., 2023, Chinese sapindaceous tree species (Sapindus mukorossi) exhibits lead tolerance and long-term phytoremediation potential for moderately contaminated soils, Chemosphere, 344: 139376. https://doi.org/10.1016/j.chemosphere.2023.139376 Sarfraz Z., Zarlashat Y., Ambreen A., Mujahid M., Iqbal M., Fatima S., Iqbal M., Iqbal R., and Fiaz S., 2025, Plant biochemistry in the era of omics: integrated omics approaches to unravel the genetic basis of plant stress tolerance, Plant Breeding, 144(3): 293-307. https://doi.org/10.1111/pbr.13277 Selvaraj A., Valliammai A., Premika M., Priya A., Bhaskar J., Krishnan V., and Pandian S., 2020, Sapindus mukorossi Gaertn. and its bioactive metabolite oleic acid impedes methicillin-resistant Staphylococcus aureus biofilm formation by down-regulating adhesion genes expression, Microbiological Research, 242: 126601. https://doi.org/10.1016/j.micres.2020.126601 Shi Y., Yan H., Wu L., Xie J., and Chen H., 2022, Effects of different irradiation treatments on total saponins content of Sapindus mukorossi, Dose-Response, 20(4): 15. https://doi.org/10.1177/15593258211062781 Singh V., Gupta K., Singh S., Jain M., and Garg R., 2023, Unravelling the molecular mechanism underlying drought stress response in chickpea via integrated multi-omics analysis, Frontiers in Plant Science, 14: 1156606. https://doi.org/10.3389/fpls.2023.1156606

RkJQdWJsaXNoZXIy MjQ4ODYzNA==