MPR_2025v15n2

Medicinal Plant Research 2025, Vol.15, No.2, 51-61 http://hortherbpublisher.com/index.php/mpr 60 Cai S., Xiao H., Wang X., Lin S., and Zhong J., 2020, Bioconversion of a ganoderic acid 3-hydroxy-lanosta-8,24-dien-26-oic acid by a crude enzyme from Ganoderma lucidum, Process Biochemistry, 95: 12-16. https://doi.org/10.1016/j.procbio.2020.05.002 Chao W., Tang C., Zhang J., Yu L., and Yoichi H., 2018, Development of a stable SCAR marker for rapid identification of Ganoderma lucidum Hunong 5 cultivar using DNA pooling method and inter-simple sequence repeat markers, Journal of Integrative Agriculture, 17(1): 130-138. https://doi.org/10.1016/S2095-3119(17)61825-2 Chen D., Wang J., Chen M., Liu Y., and Chen K., 2023, The triterpenoid high-performance liquid chromatography analytical profiles of the mycelia of Ganoderma lucidum(Lingzhi), Microbiology Research, 14(3): 92. https://doi.org/10.3390/microbiolres14030092 Chiu H., Fu H., Lu Y., Han Y., Shen Y., Venkatakrishnan K., Golovinskaia O., and Wang C., 2017, Triterpenoids and polysaccharide peptides-enriched Ganoderma lucidum: a randomized, double-blind placebo-controlled crossover study of its antioxidation and hepatoprotective efficacy in healthy volunteers, Pharmaceutical Biology, 55(1): 1041-1046. https://doi.org/10.1080/13880209.2017.1288750 Cui M., Ma Y., and Yu Y., 2021, Heme oxygenase-1/carbon monoxide signaling participates in the accumulation of triterpenoids of Ganoderma lucidum, Journal of Zhejiang University-SCIENCE B, 22(11): 941-953. https://doi.org/10.1631/jzus.B2000818 Ding Z., Zhou Z., Cheng X., Wang H., Liu J., Cai Y., Liu H., Lv M., Pan Y., and Xiao E., 2023, Inhibitory effects of Ganoderma lucidumtriterpenoid on the growth and metastasis of hepatocellular carcinoma, American Journal of Translational Research, 15(5): 3410-3423. Ekiz E., Oz E., El‐Aty A., Proestos C., Brennan C., Zeng M., Tomasevic I., Elobeid T., Çadırcı K., Bayrak M., and Oz F., 2023, Exploring the potential medicinal benefits of Ganoderma lucidum: From metabolic disorders to coronavirus infections, Foods, 12(7): 1512. https://doi.org/10.3390/foods12071512 Hennicke F., Cheikh-Ali Z., Liebisch T., Maciá‐Vicente J., Bode H., and Piepenbring M., 2016, Distinguishing commercially grown Ganoderma lucidumfrom Ganoderma lingzhi from Europe and East Asia on the basis of morphology, molecular phylogeny, and triterpenic acid profiles, Phytochemistry, 127: 29-37. https://doi.org/10.1016/j.phytochem.2016.03.012 Lian D., Li L., Liu X., Zhong X., Wang H., Zhou S., and Gu L., 2020, Time-scale dynamics of proteome predicts the central carbon metabolism involved in triterpenoid accumulation responsive to nitrogen limitation in Ganoderma lucidum, Fungal Biology, 125(4): 294-304. https://doi.org/10.1016/j.funbio.2020.11.009 Liu K., Sun B., You H., Tu J., Yu X., Zhao P., and Xu J., 2020, Dual sgRNA‐directed gene deletion in basidiomycete Ganoderma lucidum using the CRISPR/Cas9 system, Microbial Biotechnology, 13(2): 386-396. https://doi.org/10.1111/1751-7915.13534 Meng L., Bai X., Zhang S., Zhang M., Zhou S., Mukhtar I., Wang L., Li Z., and Wang W., 2019, Enhanced ganoderic acids accumulation and transcriptional responses of biosynthetic genes in Ganoderma lucidumfruiting bodies by elicitation supplementation, International Journal of Molecular Sciences, 20(11): 2830. https://doi.org/10.3390/ijms20112830 Meng L., Zhang S., Chen B., Bai X., Li Y., Yang J., Wang W., Li C., Li Y., and Li Z., 2021, The MADS-box transcription factor GlMADS1 regulates secondary metabolism in Ganoderma lucidum, Mycologia, 113(1): 12-19. https://doi.org/10.1080/00275514.2020.1810515 Mirmazloum I., Ladányi M., Omran M., Papp V., Ronkainen V., Pónya Z., Papp I., Némedi E., and Kiss A., 2021, Co-encapsulation of probiotic Lactobacillus acidophilus and Reishi medicinal mushroom (Ganoderma lingzhi) extract in moist calcium alginate beads, International Journal of Biological Macromolecules, 192: 892-901. https://doi.org/10.1016/j.ijbiomac.2021.09.177 Paramasivan K., Abdulla A., Gupta N., and Mutturi S., 2022, In silico target-based strain engineering of Saccharomyces cerevisiae for terpene precursor improvement, Integrative Biology, 14(1): zyac003. https://doi.org/10.1093/intbio/zyac003 Sheikha A., 2022, Nutritional profile and health benefits of Ganoderma lucidum “Lingzhi, Reishi, or Mannentake” as functional foods: current scenario and future perspectives, Foods, 11(7): 1030. https://doi.org/10.3390/foods11071030 Swallah M., Bondzie-Quaye P., Wu Y., Acheampong A., Sossah F., Elsherbiny S., and Huang Q., 2023, Therapeutic potential and nutritional significance of Ganoderma lucidum- a comprehensive review from 2010 to 2022, Food and Function, 14(3): 1171-1193. https://doi.org/10.1039/d2fo01683d Tan Y., Yu X., Zhang Z., Tian J., Feng N., Tang C., Zou G., and Zhang J., 2023, An efficient CRISPR/Cas9 genome editing system for a Ganoderma lucidum cultivated strain by ribonucleoprotein method, Journal of Fungi, 9(12): 1170. https://doi.org/10.3390/jof9121170 Tu J., Bai X., Xu Y., Li N., and Xu J., 2021, Targeted gene insertion and replacement in the basidiomycete Ganoderma lucidum by inactivation of nonhomologous end joining using CRISPR/Cas9, Applied and Environmental Microbiology, 87(20): e01510-21. https://doi.org/10.1128/AEM.01510-21

RkJQdWJsaXNoZXIy MjQ4ODYzNA==