Medicinal Plant Research 2025, Vol.15, No.1, 40-50 http://hortherbpublisher.com/index.php/mpr 49 Bochkov V., and Leitinger N., 2003, Anti-inflammatory properties of lipid oxidation products, Journal of Molecular Medicine, 81(11): 613-626. https://doi.org/10.1007/s00109-003-0467-2 Bornfeldt K.E., 2021, Triglyceride lowering by omega-3 fatty acids: a mechanism mediated by N-acyl taurines, Journal of Clinical Investigation, 131(6): e147558. https://doi.org/10.1172/JCI147558 Cartolano F., Dias G.D., Miyamoto S., and Damasceno N.R.T., 2022, Omega-3 fatty acids improve functionality of high-density lipoprotein in individuals with high cardiovascular risk: a randomized, parallel, controlled and double-blind clinical trial, Frontiers in Nutrition, 8: 767535. https://doi.org/10.3389/fnut.2021.767535 Choi H., Kim J., Lee K., Kim J.Y., Lee J.Y., Choi E.K., Seong H.J., Kim G., Park H., Jung E., Hong S. H., Kronbichler A., Eisenhut M., Koyanagi A., Jacob L., Yon D.K., Lee S.W., Kim M.S., Kostev K., Shin J.I., Yang J.W., and Smith L.A., 2021, Omega-3 fatty acids supplementation on major cardiovascular outcomes: an umbrella review of meta-analyses of observational studies and randomized controlled trials, European Review for Medical and Pharmacological Sciences, 25(4): 2079-2092. https://doi.org/10.26355/eurrev_202102_25113 Djuricić I., and Calder P.C., 2021, Beneficial outcomes of omega-6 and omega-3 polyunsaturated fatty acids on human health: an update for 2021, Nutrients, 13(7): 2421. https://doi.org/10.3390/nu13072421 Dludla P.V., Nkambule B.B., Mazibuko-Mbeje S.E., Nyambuya T.M., Marcheggiani F., Cirilli I., Ziqubu K., Shabalala S.C., Johnson R., Louw J., Damiani E., and Tiano L., 2020, N-acetyl cysteine targets hepatic lipid accumulation to curb oxidative stress and inflammation in NAFLD: a comprehensive analysis of the literature, Antioxidants, 9(12): 1283. https://doi.org/10.3390/antiox9121283 Feng J., Chen X., Wang S., Zhang J., Wang Q., Guo S., and Shen Q., 2023, Transcriptomics integrated with metabolomics reveals the ameliorating effect of mussel-derived plasmalogens on high-fat diet-induced hyperlipidemia in zebrafish, Food & Function, 14: 3690-3702. https://doi.org/10.1039/d3fo00063j Gao Q., Luo Z., Yu C., Shen C., Xu W., Zhang J., Zhang H., and Xu J., 2023, Microbe-derived antioxidants alleviate liver and adipose tissue lipid disorders and metabolic inflammation induced by high fat diet in mice, International Journal of Molecular Sciences, 24(4): 3269. https://doi.org/10.3390/ijms24043269 Gorinstein S., Leontowicz M., Leontowicz H., Namieśnik J., Jastrzebski Z., Drzewiecki J., Park Y., Ham K., Heo B., and Trakhtenberg S., 2008, Influence of mussels (Mytilus galloprovincialis) from polluted and non-polluted areas on some atherosclerosis indices in rats fed cholesterol, Food Chemistry, 111(2): 381-386. https://doi.org/10.1016/j.foodchem.2008.03.082 Grienke U., Silke J., and Taşdemir D., 2014, Bioactive compounds from marine mussels and their effects on human health, Food Chemistry, 142: 48-60. https://doi.org/10.1016/j.foodchem.2013.07.027 Kuang X., Shao X., Li H., Jiang D., Gao T., Yang J., Li K., and Li D., 2022, Lipid extract from blue mussel (Mytilus edulis) improves glycemic traits in Chinese type 2 diabetic mellitus patients: a double-blind randomized controlled trial, Journal of the Science of Food and Agriculture, 102(13): 5623-5630. https://doi.org/10.1002/jsfa.12346 Liu S., Kuang X., Song X., Li H., Shao X., Gao T., Guo X., Li S., Liu R., Li K., and Li D., 2023, Effects of lipid extract from blue mussel (Mytilus edulis) on gut microbiota, and its relationship with glycemic traits in type 2 diabetes mellitus patients: a double-blind randomized controlled trial, Food & Function, 14(20): 10021-10034. https://doi.org/10.1039/d3fo01491f Li M.M., 2024, Innate defense role of extracellular vesicles: the critical role of phosphatidylserine in combating apoptotic mimicry viruses, International Journal of Molecular Medical Science, 14(2): 100-105. https://doi.org/10.5376/ijmms.2024.14.0013 Micallef M.A., and Garg M.L., 2008, The lipid-lowering effects of phytosterols and n-3 polyunsaturated fatty acids are synergistic and complementary in hyperlipidemic men and women, Journal of Nutrition, 138(6): 1086-1090. https://doi.org/10.1093/jn/138.6.1086 Natto Z., Yaghmoor W., Alshaeri H., and Van Dyke T., 2019, Omega-3 Fatty Acids Effects on Inflammatory Biomarkers and Lipid Profiles among Diabetic and Cardiovascular Disease Patients: A Systematic Review and Meta-Analysis, Scientific Reports, 9: 18867. https://doi.org/10.1038/s41598-019-54535-x Nègre-Salvayre A., Dousset N., Ferretti G., Bacchetti T., Curatola G., and Salvayre R., 2006, Antioxidant and cytoprotective properties of high-density lipoproteins in vascular cells, Free Radical Biology and Medicine, 41(7): 1031-1040. https://doi.org/10.1016/j.freeradbiomed.2006.07.006 Sherratt S., Mason R., Libby P., Steg P., and Bhatt D., 2023, Do patients benefit from omega-3 fatty acids?, Cardiovascular Research, 119(14): 2884-2901. https://doi.org/10.1093/cvr/cvad188 Simopoulos A.P., 1991, Omega-3 fatty acids in health and disease and in growth and development, The American Journal of Clinical Nutrition, 54(3): 438-463. https://doi.org/10.1093/ajcn/54.3.438
RkJQdWJsaXNoZXIy MjQ4ODYzNA==