MPR_2024v14n6

Medicinal Plant Research 2024, Vol.14, No.6, 358-370 http://hortherbpublisher.com/index.php/mpr 369 Liu C., Qi M., Li L., Yuan Y., Wu X., and Fu J., 2020, Natural cordycepin induces apoptosis and suppresses metastasis in breast cancer cells by inhibiting the Hedgehog pathway, Food & Function, 11(3): 2107-2116. https://doi.org/10.1039/c9fo02879j Liu F., Zhu Z.Y., Sun X., Gao H., and Zhang Y.M., 2017, The preparation of three selenium-containing Cordyceps militaris polysaccharides: Characterization and anti-tumor activities, International Journal of Biological Macromolecules, 99: 196-204. https://doi.org/10.1016/j.ijbiomac.2017.02.064 Liu X.C., Zhu Z.Y., Liu Y.L., and Sun H.Q., 2019, Comparisons of the anti-tumor activity of polysaccharides from fermented mycelia and cultivated fruiting bodies of Cordyceps militaris in vitro, International Journal of Biological Macromolecules, 130: 307-314. https://doi.org/10.1016/j.ijbiomac.2019.02.155 Liu Y., Guo Z.J., and Zhou X.W., 2022, Chinese Cordyceps: Bioactive components, antitumor effects and underlying mechanism—A review, Molecules, 27(19): 6576. https://doi.org/10.3390/molecules27196576 Lu T., Zhou L., Chu Z., Song Y., Wang Q., Zhao M., Dai C., Chen L., Cheng G., Wang J., and Guo Q., 2024, Cordyceps sinensis relieves non-small cell lung cancer by inhibiting the MAPK pathway, Chinese Medicine, 19(1): 54. https://doi.org/10.1186/s13020-024-00895-0 Luo X., Duan Y., Yang W., Zhang H., Li C., and Zhang J., 2017, Structural elucidation and immunostimulatory activity of polysaccharide isolated by subcritical water extraction fromCordyceps militaris, Carbohydrate Polymers, 157: 794-802. https://doi.org/10.1016/j.carbpol.2016.10.066 Miao M., Yu W.Q., Li Y., Sun Y.L., and Guo S.D., 2022, Structural elucidation and activities of Cordyceps militaris-derived polysaccharides: A review, Frontiers in Nutrition, 9: 898674. https://doi.org/10.3389/fnut.2022.898674 Nurmamat E., Xiao H., Zhang Y., and Jiao Z., 2018, Effects of different temperatures on the chemical structure and antitumor activities of polysaccharides from Cordyceps militaris, Polymers, 10(4): 430. https://doi.org/10.3390/polym10040430 Qi W., Zhou X., Wang J., Zhang K., Zhou Y., Chen S., Nie S., and Xie M., 2020, Cordyceps sinensis polysaccharide inhibits colon cancer cells growth by inducing apoptosis and autophagy flux blockage via mTOR signaling, Carbohydrate Polymers, 237: 116113. https://doi.org/10.1016/j.carbpol.2020.116113 Qiao J., Shuai Y., Zeng X., Xu D., Rao S., Zeng H., and Li F., 2019, Comparison of chemical compositions, bioactive ingredients, and in vitro antitumor activity of four products of Cordyceps (Ascomycetes) strains from China, International Journal of Medicinal Mushrooms, 21(4): 331-342. https://doi.org/10.1615/INTJMEDMUSHROOMS.2019030329 Shi K., Yang G., He L., Yang B., Li Q., and Yi S., 2020, Purification, characterization, antioxidant, and antitumor activity of polysaccharides isolated from silkworm Cordyceps, Journal of Food Biochemistry, 44(11): e13482. https://doi.org/10.1111/jfbc.13482 Sui G., Zhang Z., Tian X., Miao Y., Cheng M., Pan W., Zheng G., and Ye X., 2025, Cordyceps sinensis mycelium refined polysaccharides regulate PI3K/AKT/mTOR pathway to inhibit hepatocellular carcinoma and its synergistic effect on cyclophosphamide, Pharmacognosy Magazine, 09731296251324706. https://doi.org/10.1177/09731296251324706 Sun H., Zhu Z., Tang Y., Ren Y., Song Q., Tang Y., and Zhang Y., 2018, Structural characterization and antitumor activity of a novel Se-polysaccharide from selenium-enriched Cordyceps gunnii, Food & Function, 9(5): 2744-2754. https://doi.org/10.1039/c8fo00027a Tan L., Liu S., Li X., He J., He L., Li Y., Yang C., Li Y., Hua Y., and Guo J., 2023, The large molecular weight polysaccharide from wild Cordyceps and its antitumor activity on H22 tumor-bearing mice, Molecules, 28(8): 3351. https://doi.org/10.3390/molecules28083351 Wan J., Zhu Y., Jiang X., Wang F., Zhou Z., Wang J., Liu C., Wei Y., and Zhen O., 2023, Immunomodulation of RAW264.7 cells by CP80-1, a polysaccharide of Cordyceps cicadae, via Dectin-1/Syk/NF-κB signaling pathway, Food and Agricultural Immunology, 34(1): 2231172. https://doi.org/10.1080/09540105.2023.2231172 Wang X., Zhang J., Zhang K., Guo Z., Xu G., Huang L., Wang L., and Li J., 2024, Ultrasound-assisted enzyme extraction, physicochemical properties and antioxidant activity of polysaccharides fromCordyceps militaris solid medium, Molecules, 29(19): 4560. https://doi.org/10.3390/molecules29194560 Wu N., Ge X., Yin X., Yang L., Chen L., Shao R., and Xu W., 2024, A review on polysaccharide biosynthesis in Cordyceps militaris, International Journal of Biological Macromolecules, 260: 129336. https://doi.org/10.1016/j.ijbiomac.2024.129336 Xie L., Shen M., Hong Y., Ye H., Huang L., and Xie J., 2020, Chemical modifications of polysaccharides and their anti-tumor activities, Carbohydrate Polymers, 229: 115436. https://doi.org/10.1016/j.carbpol.2019.115436

RkJQdWJsaXNoZXIy MjQ4ODYzNA==