MPR_2024v14n6

Medicinal Plant Research 2024, Vol.14, No.6, 345-357 http://hortherbpublisher.com/index.php/mpr 356 Pak S., Han M., Li H., Pak H., and Li J., 2020, Breeding of the transgenic chrysanthemum (Chrysanthemum morifoliumRamat.) carrying aphid-resistance gene, Pinellia ternata agglutinin (PTA), Plant Biotechnology Reports, 14(3): 255-262. https://doi.org/10.1007/s11816-019-00587-4 Seliem M., Taha N., El-Feky N., Abdelaal K., El-Ramady H., El-Mahrouk M., and Bayoumi Y., 2024, Evaluation of five Chrysanthemum morifoliumcultivars against leaf blight disease caused by Alternaria alternataat rooting and seedling growth stages, Plants, 13: 20252. https://doi.org/10.3390/plants13020252 Sidhya P., Sarkar D., Sarkar I., and Pal S., 2024, Screening of chrysanthemum cultivars for their tolerance against sucking pests in Terai Region of West Bengal, India, Uttar Pradesh Journal of Zoology, 45(20): 465-471. https://doi.org/10.56557/upjoz/2024/v45i204603 Sniezko R., and Koch J., 2017, Breeding trees resistant to insects and diseases: putting theory into application, Biological Invasions, 19: 3377-3400. https://doi.org/10.1007/s10530-017-1482-5 Su J., Jiang J., Zhang F., Liu Y., Ding L., Chen S., and Chen F., 2019, Current achievements and future prospects in the genetic breeding of chrysanthemum: a review, Horticulture Research, 6: 101. https://doi.org/10.1038/s41438-019-0193-8 Sumitomo K., Shirasawa K., Isobe S., Hirakawa H., Harata A., Kawabe M., Yagi M., Osaka M., Kunihisa M., and Taniguchi F., 2021, DNA marker for resistance to Puccinia horiana in chrysanthemum (Chrysanthemum morifoliumRamat.) “Southern Pegasus”, Breeding Science, 71(2): 261-267. https://doi.org/10.1270/jsbbs.20063 Sumitomo K., Shirasawa K., Isobe S., Hirakawa H., Harata A., Nakano M., Nakano Y., Yagi M., Hisamatsu T., Yamaguchi H., and Taniguchi F., 2022, A genome-wide association and fine-mapping study of white rust resistance in hexaploid chrysanthemum cultivars with a wild diploid reference genome, Horticulture Research, 9: uhac170. https://doi.org/10.1093/hr/uhac170 Wang J., Ge C., Zhu L., Sun M., and Wang F., 2021, The application of selenium combined with gibberellin enhances the yield and quality of Chrysanthemum morifoliumRamat cv. Hangju, Journal of Plant Nutrition, 44(6): 791-800. https://doi.org/10.1080/01904167.2021.1871750 Wang T., Yang F., Guo Q., Zou Q., Zhang W., and Zuo L., 2020, Long-read sequencing of Chrysanthemum morifolium transcriptome reveals flavonoid biosynthesis and regulation, Plant Growth Regulation, 92(3): 559-569. https://doi.org/10.1007/s10725-020-00660-x Wang Y., Wang M., Li Y., Wu A., and Huang J., 2018, Effects of arbuscular mycorrhizal fungi on growth and nitrogen uptake of Chrysanthemum morifolium under salt stress, PLoS One, 13(4): e0196408. https://doi.org/10.1371/journal.pone.0196408 Wang Y., Zhang W., Hong C., Zhai L., Wang X., Zhou L., Song A., Jiang J., Wang L., Chen F., and Chen S., 2024, Chrysanthemum morifoliumCmHRE2-like negatively regulates the resistance of chrysanthemum to the aphid (Macrosiphoniella sanborni), BMC Plant Biology, 24(1): 76. https://doi.org/10.1186/s12870-024-04758-6 Wigboldus S., Klerkx L., Leeuwis C., Schut M., Muilerman S., and Jochemsen H., 2016, Systemic perspectives on scaling agricultural innovations: a review, Agronomy for Sustainable Development, 36(3): 1-20. https://doi.org/10.1007/s13593-016-0380-z Xia C., Xue W., Li Z., Shi J., Yu G., and Zhang Y., 2023, Presenting the secrets: exploring endogenous defense mechanisms in chrysanthemums against aphids, Horticulturae, 9(8): 937. https://doi.org/10.3390/horticulturae9080937 Xu M., Jiang Y., Chen S., Chen F., and Chen F., 2021, Herbivory-induced emission of volatile terpenes in Chrysanthemum morifoliumfunctions as an indirect defense against Spodoptera litura larvae by attracting natural enemies, Journal of Agricultural and Food Chemistry, 69(34): 9743-9753. https://doi.org/10.1021/acs.jafc.1c02637 Zhan Q., Liu L., Li W., Lu J., Jiang J., Chen F., Liu Y., and Guan Z., 2025, Toxin production by Alternaria alternata in black spot disease of Chrysanthemum morifolium‘Fubai’: accumulation of altenuene and tenuazonic acid in flowers, Toxins, 17(4): 181. https://doi.org/10.3390/toxins17040181 Zhang S., Liu L., Li W., Yin M., Hu Q., Chen S., Chen F., Liu Y., Guan Z., and Jiang J., 2025, Alternaria alternata effector AaAlta1 targets CmWD40 and participates in regulating disease resistance in Chrysanthemum morifolium, PLoS Pathogens, 21(3): e1012942. https://doi.org/10.1371/journal.ppat.1012942 Zhang S., Miao W., Liu Y., Jiang J., Chen S., Chen F., and Guan Z., 2023, Jasmonate signaling drives defense responses against Alternaria alternata in chrysanthemum, BMC Genomics, 24(1): 553. https://doi.org/10.1186/s12864-023-09671-0 Zhang W., Wang T., Guo Q., Zou Q., Yang F., Lu D., and Liu J., 2020, Effect of soil moisture regimes in the early flowering stage on inflorescence morphology and medicinal ingredients of Chrysanthemum morifoliumRamat. cv. ‘Hangju’, Scientia Horticulturae, 260: 108849. https://doi.org/10.1016/j.scienta.2019.108849 Zhang X.Y., Sun X.Z., Zhang S., Yang J.H., Liu F.F., and Fan J., 2019, Comprehensive transcriptome analysis of grafting onto Artemisia scoparia W. to affect the aphid resistance of chrysanthemum (Chrysanthemum morifoliumT.), BMC Genomics, 20(1): 776. https://doi.org/10.1186/s12864-019-6158-3

RkJQdWJsaXNoZXIy MjQ4ODYzNA==