MPR_2024v14n6

Medicinal Plant Research 2024, Vol.14, No.6, 334-344 http://hortherbpublisher.com/index.php/mpr 343 Cao J., Zeng J., Hu R., Liang W., Zheng T., Yang J., Liang X., Huang X., and Chen Y., 2024, Comparative metabolome and transcriptome analyses of the regulatory mechanism of light intensity in the synthesis of endogenous hormones and anthocyanins in Anoectochilus roxburghii (Wall.) Lindl., Genes, 15(8): 989. https://doi.org/10.3390/genes15080989 Castillo V.S., 2023, Analysis of the scientific production on the implementation of artificial intelligence in precision agriculture, LatIA, (1): 1. https://doi.org/10.62486/latia20231 Chen J.Y., and Liu B.C., 2015, Zhejiang Anoectochilus roxburghii seed tissue culture and rapid seedling raising method, China Patent, CN104823847A. Chen C.L., Luo X.H., Jin G.R., Cheng Z., Pan X.Y., Zhu G.L., Li S., Zhu Y.G., and Tang N.N., 2017, Shading effect on survival, growth, and contents of secondary metabolites in micropropagated Anoectochilus plantlets, Brazilian Journal of Botany, 40: 599-607. https://doi.org/10.1007/s40415-017-0365-4 Chen M., Zeng X., Liu Y., Zhang H., and Hu Q., 2021, An orthogonal design of light factors to optimize growth, photosynthetic capability and metabolite accumulation of Anoectochilus roxburghii (Wall.) Lindl., Scientia Horticulturae, 288: 110272. https://doi.org/10.1016/j.scienta.2021.110272 Diagne N., Ngom M., Djighaly P., Fall D., Hocher V., and Svistoonoff S., 2020, Roles of arbuscular mycorrhizal fungi on plant growth and performance: Importance in biotic and abiotic stressed regulation, Diversity, 12(10): 370. https://doi.org/10.3390/d12100370 Gam D., Khoi P., Ngoc P., Linh L., Hưng N., Anh P., Thu N., Hien N., Khanh T., and Ha C., 2020, LED lights promote growth and flavonoid accumulation of Anoectochilus roxburghii and are linked to the enhanced expression of several related genes, Plants, 9(10): 1344. https://doi.org/10.3390/plants9101344 Jin M.Y., Zhang L.Q., Piao X.C., Gao R., and Lian M.L., 2018, Optimization of culture conditions for the production of polysaccharides and kinsenoside from the rhizome cultures of Anoectochilus roxburghii (Wall.) Lindl., In Vitro Cellular & Developmental Biology - Plant, 54: 25-35. https://doi.org/10.1007/s11627-017-9883-9 Jin M., Han L., Li H., Wang H., Piao X., and Lian M., 2017, Kinsenoside and polysaccharide production by rhizome culture of Anoectochilus roxburghii in continuous immersion bioreactor systems, Plant Cell, Tissue and Organ Culture (PCTOC), 131: 527-535. https://doi.org/10.1007/s11240-017-1302-8 Khaliq A., Perveen S., Alamer K., Haq M., Rafique Z., Alsudays I., Althobaiti A., Saleh M., Hussain S., and Attia H., 2022, Arbuscular mycorrhizal fungi symbiosis to enhance plant-soil interaction, Sustainability, 14(13): 7840. https://doi.org/10.3390/su14137840 Kim T.H., and AlZubi A.A., 2024, AI-enhanced precision irrigation in legume farming: optimizing water use efficiency, Legume Research, 47(8): 1382-1389. https://doi.org/10.18805/lrf-791 Krasowski M.J., 2003, Root system modifications by nursery culture reflect on post-planting growth and development of coniferous seedlings, The Forestry Chronicle, 79(5): 882-891. https://doi.org/10.5558/TFC79882-5 Li B., Tang M., Tang K., Zhao L., and Guo S., 2012, Screening for differentially expressed genes in Anoectochilus roxburghii (Orchidaceae) during symbiosis with the mycorrhizal fungus Epulorhiza sp., Science China Life Sciences, 55: 164-171. https://doi.org/10.1007/s11427-012-4284-0 Lazcano-Bello M.I., Sandoval-Castro E., Tornero-Campante M.A., Hernández-Hernández B.N., Ocampo-Fletes I., and Díaz-Ruíz R., 2021, Evaluation of substrates, nutrient solution and rooting agent in tomato seedling production, Revista Mexicana de Ciencias Agrícolas, 12(1): 61-76. https://doi.org/10.29312/remexca.v12i1.2450 Lin X., Jiang X., Yang Z., Ma X., Yan X., and Yang L., 2018, Tissue culture rapid propagation and transplantation techniques of Anoectochilus roxburghii (Wall) Lindl., Medicinal Plant, 9(1): 43-46. https://doi.org/10.19600/j.cnki.issn2152-3924.2018.01.011 Qin T., Kazim A., Wang Y., Richard D., Yao P., Bi Z., Liu Y., Sun C., and Bai J., 2022, Root-related genes in crops and their application under drought stress resistance—A review, International Journal of Molecular Sciences, 23(19): 11477. https://doi.org/10.3390/ijms231911477 Ru S., 2015, Optimization of rapid propagation system for Anoectochilus roxburghii (Wall.) Lindl., Journal of Anhui Agricultural Sciences. Shao L.L., Chen H.Y., Pan Q.M., Huang S.R., and Bai Y.B., 2019, Growth effects of Anoectochilus roxburghii (Wall.) Lindl. under two cultivation modes, pp. 2263-2270. Shao Q.S., Zhou A.C., Huang Y.Q., Dong Y.L., Hu B.K., and Li M.Y., 2014, Effects of different transplanting conditions on survival rate and growing status of Anoectochilus roxburghii plantlets, Zhongguo Zhong Yao Za Zhi (China Journal of Chinese Materia Medica), 39(6): 955-958. https://doi.org/10.4268/cjcmm20140602 Susila H., Nasim Z., and Ahn J.H., 2018, Ambient temperature-responsive mechanisms coordinate regulation of flowering time, International Journal of Molecular Sciences, 19(10): 3196. https://doi.org/10.3390/ijms19103196 Wang H., Chen X., Yan X., Xu Z., Shao Q., Wu X., Tou L., Fang L., Wei M., and Wang H., 2022, Induction, proliferation, regeneration and kinsenoside and flavonoid content analysis of the Anoectochilus roxburghii (Wall.) Lindl protocorm-like body, Plants, 11(19): 2465. https://doi.org/10.3390/plants11192465

RkJQdWJsaXNoZXIy MjQ4ODYzNA==