MPR_2024v14n4

Medicinal Plant Research 2024, Vol.14, No.4, 196-209 http://hortherbpublisher.com/index.php/mpr 209 Wang H., Dang J., Wu D., Xie Z., Yan S., Luo J., Guo Q., and Liang G., 2021, Genotyping of polyploid plants using quantitative PCR: application in the breeding of white-fleshed triploid loquats (Eriobotrya japonica), Plant Methods, 17: 1-18. https://doi.org/10.1186/s13007-021-00792-9 Wang Y., 2021, A draft genome at chromosome level and metabolomes of leave, root and flowers provide insights into the molecular basis of medicinal ingredients of loquat (Eriobotrya japonica(Thunb.) Lindl), Preprint. https://doi.org/10.21203/RS.3.RS-150389/V1 Wen G., Dang J., Xie Z., Wang J., Jiang P., Guo Q., and Liang G., 2020, Molecular karyotypes of loquat (Eriobotrya japonica) aneuploids can be detected by using SSR markers combined with quantitative PCR irrespective of heterozygosity, Plant Methods, 16(1): 22. https://doi.org/10.1186/s13007-020-00568-7 Wu R., Zhou L., Chen Y., Ding X., Liu Y., Tong B., Lv H., Meng X., Li J., Jian T., and Chen J., 2022, Sesquiterpene glycoside isolated from loquat leaf targets gut microbiota to prevent type 2 diabetes mellitus in db/db mice, Food & Function, 13(3): 1519-1534. https://doi.org/10.1039/d1fo03646g Wu R., Jian T., Ding X., Lv H., Meng X., Ren B., Li J., Chen J., and Li W., 2021, Total sesquiterpene glycosides from loquat leaves ameliorate HFD-induced insulin resistance by modulating IRS-1/GLUT4, TRPV1, and SIRT6/Nrf2 signaling pathways, Oxidative Medicine and Cellular Longevity, (1): 4706410. https://doi.org/10.1155/2021/4706410 Xiao S., Wang W., and Liu Y., 2023, Research progress on extraction and separation of active components from loquat leaves, Separations, 10(2): 126. https://doi.org/10.3390/separations10020126 Yahia Y., Benabderrahim M.A., Tlili N., Hannachi H., Ayadi L., and Elfalleh W., 2020, Comparison of three extraction protocols for the characterization of caper (Capparis spinosa L.) leaf extracts: Evaluation of phenolic acids and flavonoids by liquid chromatography–electrospray ionization–tandem mass spectrometry (LC–ESI–MS) and the antioxidant activity, Analytical Letters, 53(9): 1366-1377. https://doi.org/10.1080/00032719.2019.1706546 Yan Q.J., Chen Y.Y., Wu M.X., Yang H., Cao J.P., Sun C.D., and Wang Y., 2023, Phenolics and terpenoids profiling in diverse loquat fruit varieties and systematic assessment of their mitigation of alcohol-induced oxidative stress, Antioxidants, 12(10): 1795. https://doi.org/10.3390/antiox12101795 Zhang J., Zhang M.X., Xu M., Yin X.R., Grierson D., and Chen K.S., 2018, EjMYB4 is a transcriptional activator of 4-Coumarate: coenzyme A ligase involved in lignin biosynthesis in loquat (Eriobotrya japonica), Plant Growth Regulation, 86: 413-421. https://doi.org/10.1007/s10725-018-0439-8 Zhang K., Zhou J., Song P., Li X., Peng X., Huang Y., Ma Q., Liang D., and Deng Q., 2023, Dynamic changes of phenolic composition, antioxidant capacity, and gene expression in ‘Snow White’ loquat (Eriobotrya japonica Lindl.) fruit throughout development and ripening, International Journal of Molecular Sciences, 25(1): 80. https://doi.org/10.3390/ijms25010080 Zhou X., Chen H., Wei F., Zhao Q., Su Q., Lei Y., Yin M., Tian X., Liu Z., Yu B., Bai C., He X., and Huang Z., 2019, The inhibitory effects of pentacyclic triterpenes from loquat leaf against Th17 differentiation, Immunological Investigations, 49(6): 632-647. https://doi.org/10.1080/08820139.2019.1698599 Disclaimer/Publisher's Note The statements, opinions, and data contained in all publications are solely those of the individual authors and contributors and do not represent the views of the publishing house and/or its editors. The publisher and/or its editors disclaim all responsibility for any harm or damage to persons or property that may result from the application of ideas, methods, instructions, or products discussed in the content. Publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

RkJQdWJsaXNoZXIy MjQ4ODYzNA==