Medicinal Plant Research 2024, Vol.14, No.4, 196-209 http://hortherbpublisher.com/index.php/mpr 208 Hadjipieri M., Christofi M., Goulas V., and Manganaris G.A., 2020, The impact of genotype and harvesting day on qualitative attributes, postharvest performance and bioactive content of loquat fruit, Scientia Horticulturae, 263: 108891. https://doi.org/10.1016/j.scienta.2019.108891 Hasibuan F.E., Syahfitri W., Ilyas S., and Hutahaean S., 2020, Phytochemical screening, antioxidant activity and thin-layer chromatography test of methanol extract and simplicia leaves of loquat (Eriobotrya japonica Lindl.), IOP Conference Series: Materials Science and Engineering, 725(1): 012069. https://doi.org/10.1088/1757-899X/725/1/012069 Ibrahim R.M., 2021, A review on active constituents and pharmacological effects of Eriobotrya japonica Lindl. (Loquat), Iraqi Journal of Pharmaceutical Sciences, 30(1): 41-55. https://doi.org/10.31351/vol30iss1pp41-55 Jian T., Chen J., Ding X., Lv H., Li J., Wu Y., Ren B., Tong B., Zuo Y., Su K., and Li W., 2020a, Flavonoids isolated from loquat (Eriobotrya japonica) leaves inhibit oxidative stress and inflammation induced by cigarette smoke in COPD mice: the role of TRPV1 signaling pathways, Food & Function, 11(4): 3516-3526. https://doi.org/10.1039/c9fo02921d Jian T., Ding X., Li J., Wu Y., Ren B., Li J., Lv H., Chen J., and Li W., 2020b, Triterpene acids of loquat leaf improve inflammation in cigarette smoking induced COPD by regulating AMPK/Nrf2 and NFκB pathways, Nutrients, 12(3): 657. https://doi.org/10.3390/nu12030657 Jian T., Wu Y., Ding X., Lv H., Ma L., Zuo Y., Ren B., Zhao L., Tong B., Chen J., and Li W., 2018, A novel sesquiterpene glycoside from loquat leaf alleviates oleic acid-induced steatosis and oxidative stress in HepG2 cells, Biomedicine & Pharmacotherapy, 97: 1125-1130. https://doi.org/10.1016/j.biopha.2017.11.043 Jing D., Liu X., He Q., Dang J., Hu R., Xia Y., Wu D., Wang S., Zhang Y., Xia Q., Zhang C., Yu Y., Guo Q., and Liang G., 2022, Genome assembly of wild loquat (Eriobotrya japonica) and resequencing provide new insights into the genomic evolution and fruit domestication in loquat, Horticulture Research, 10(2): uhac265. https://doi.org/10.1093/hr/uhac265 Khouya T., Ramchoun M., Elbouny H., Hmidani A., and Alem C., 2022, Loquat (Eriobotrya japonica (Thunb.) Lindl.): Evaluation of nutritional value, polyphenol composition, antidiabetic effect, and toxicity of leaf aqueous extract, Journal of Ethnopharmacology, 296: 115473. https://doi.org/10.2139/ssrn.4031562 Liu C., Liu T., Ohlson E., Wang L., Wu D., Guo Q., Timko M., and Liang G., 2019, Loquat (Eriobotrya japonica (Thunb.)) circadian clock gene cloning and heterosis studies of artificial triploid loquat, Scientia Horticulturae, 246: 328-337. https://doi.org/10.1016/j.scienta.2018.10.068 Liu Y., Zhang W., Xu C., and Li X., 2016, Biological activities of extracts from Loquat (Eriobotrya japonica Lindl.): A review, International Journal of Molecular Sciences, 17(12): 1983. https://doi.org/10.3390/ijms17121983 Li W., Yang H., Zhao Q., Wang X., Zhang J., and Zhao X., 2019, Polyphenol-rich loquat fruit extract prevents fructose-induced nonalcoholic fatty liver disease by modulating glycometabolism, lipometabolism, oxidative stress, inflammation, intestinal barrier, and gut microbiota in mice, Journal of Agricultural and Food Chemistry, 67(27): 7726-7737. https://doi.org/10.1021/acs.jafc.9b02523 López-Lluch D.B., Cano-Lamadrid M., Hernández F., Zimmer A., Lech K., Figiel A., Carbonell-Barrachina Á., and Wojdyło A., 2020, Hydroxycinnamic acids and carotenoids of dried loquat fruit cv. ‘Algar’ affected by freeze-, convective-, vacuum-microwave- and combined-drying methods, Molecules, 25(16): 3643. https://doi.org/10.3390/molecules25163643 Shrinet K., Singh R.K., Chaurasia A.K., Tripathi A., and Kumar A., 2021, Bioactive compounds and their future therapeutic applications, in Natural Bioactive Compounds, pp. 337-362. https://doi.org/10.1016/b978-0-12-820655-3.00017-3 Silva V.D., Macedo M.C.C., Dos Santos A.N., Silva M.R., Augusti R., Lacerda I.C.A., Melo J., and Fante C.A., 2020, Bioactive activities and chemical profile characterization using paper spray mass spectrometry of extracts of Eriobotrya japonica Lindl. leaves, Rapid Communications in Mass Spectrometry, 34(19): e8883. https://doi.org/10.1002/rcm.8883 Su W., Jing Y., Lin S., Yue Z., Yang X., Xu J., Wu J., Zhang Z., Xia R., Zhu J., An N., Chen H., Hong Y., Yuan Y., Long T., Zhang L., Jiang Y., Liu Z., Zhang H., Gao Y., Liu Y., Lin H., Wang H., Yant L., Lin S., and Liu Z., 2021, Polyploidy underlies co-option and diversification of biosynthetic triterpene pathways in the apple tribe, Proceedings of the National Academy of Sciences, 118(20): e2101767118. https://doi.org/10.1073/pnas.2101767118 Sun W., and Shahrajabian M.H., 2023, Therapeutic potential of phenolic compounds in medicinal plants—Natural health products for human health, Molecules, 28(4): 1845. https://doi.org/10.3390/molecules28041845 Tavares L., Smaoui S., Pinilla C.M.B., Hlima H.B., and Barros H.L., 2022, Ginger: a systematic review of clinical trials and recent advances in encapsulation of its bioactive compounds, Food & Function, 13(3): 1078-1091. https://doi.org/10.1039/d1fo02998c
RkJQdWJsaXNoZXIy MjQ4ODYzNA==