MPR_2024v14n3

Medicinal Plant Research 2024, Vol.14, No.3, 162-170 http://hortherbpublisher.com/index.php/mpr 169 Ganie I., Ahmad Z., Shahzad A., Zaushintsena A., Neverova O., Ivanova S., Wasi A., and Tahseen S., 2022, Biotechnological intervention and secondary metabolite production in Centella asiaticaL., Plants, 11(21): 2928. https://doi.org/10.3390/plants11212928 García-Oliveira P., Otero P., Pereira A., Chamorro F., Carpena M., Echave J., Fraga-Corral M., Simal-Gándara J., and Prieto M., 2021, Status and challenges of plant-anticancer compounds in cancer treatment, Pharmaceuticals, 14(2): 157. https://doi.org/10.3390/ph14020157 Gomes D., Alencar M., Reis A., Lima R., Santos J., Mata A., Dias A., Costa J., Medeiros M., Paz M., Moreno L., Sousa J., Islam M., and Cavalcante A., 2019, Antioxidant, anti-inflammatory and cytotoxic/antitumoral bioactives from the phylum Basidiomycota and their possible mechanisms of action, Biomedicine & Pharmacotherapy, 112: 108643. https://doi.org/10.1016/j.biopha.2019.108643 Hazarika I., Mukundan G.K., Sundari P.S., and Laloo D., 2021, Journey of Hydrocotyle sibthorpioides Lam.: From traditional utilization to modern therapeutics—A review, Phytotherapy Research, 35(4): 1847-1871. https://doi.org/10.1002/ptr.6924 He X., Liu S., Huang X., Yu F., Li Y., Li F., and Liu K., 2023, Effects of sulfate on the photosynthetic physiology characteristics of Hydrocotyle vulgaris under zinc stress, Functional Plant Biology, 50(9): 724-735. https://doi.org/10.1071/FP23054 Houghton C.A., 2019, Sulforaphane: Its “coming of age” as a clinically relevant nutraceutical in the prevention and treatment of chronic disease, Oxidative Medicine and Cellular Longevity, 2019(1): 2716870. https://doi.org/10.1155/2019/2716870 Jantan I., Haque M.A., Arshad L., Harikrishnan H., Septama A.W., and Mohamed-Hussein Z.A., 2021, Dietary polyphenols suppress chronic inflammation by modulation of multiple inflammation-associated cell signaling pathways, The Journal of Nutritional Biochemistry, 93: 108634. https://doi.org/10.1016/j.jnutbio.2021.108634 Kong Y., Qi Y., Cui N., Zhang Z., Wei N., Wang C., Zeng Y., Sun Y., Kuang H., and Wang Q., 2023, The traditional herb Polygonum hydropiper from China: A comprehensive review on phytochemistry, pharmacological activities and applications, Pharmaceutical Biology, 61(1): 799-814. https://doi.org/10.1080/13880209.2023.2208639 Kour G., Haq S.A., Bajaj B.K., Gupta P.N., and Ahmed Z., 2021, Phytochemical add-on therapy to DMARDs therapy in rheumatoid arthritis: In vitro and in vivo bases, clinical evidence and future trends, Pharmacological Research, 169: 105618. https://doi.org/10.1016/j.phrs.2021.105618 Li Q.W., Zhang X.Y., Gao J.Q., Song M.H., Liang J.F., and Yue Y., 2019, Effects of N addition frequency and quantity on Hydrocotyle vulgaris growth and greenhouse gas emissions from wetland microcosms, Sustainability, 11(6): 1520. https://doi.org/10.3390/SU11061520 Liao H., Ye J., Gao L., and Liu Y., 2021, The main bioactive compounds of Scutellaria baicalensis Georgi for alleviation of inflammatory cytokines: A comprehensive review, Biomedicine & Pharmacotherapy, 133: 110917. https://doi.org/10.1016/j.biopha.2020.110917 Liu K., Liang X., Li C., Wang L., He X., Qin R., Li Y., and Yu F., 2021, Hydrocotyle vulgaris L.: A new cadmium-tolerant landscape species and its physiological responses to cadmium exposure, Environmental Science and Pollution Research, 28: 26045-26054. https://doi.org/10.1007/s11356-021-12511-x Mahmoodi M., Ayoobi F., Aghaei A., Rahmani M., Taghipour Z., Hosseini A., Jafarzadeh A., and Sankian M., 2019, Beneficial effects of Thymus vulgaris extract in experimental autoimmune encephalomyelitis: Clinical, histological and cytokine alterations, Biomedicine & Pharmacotherapy, 109: 2100-2108. https://doi.org/10.1016/j.biopha.2018.08.078 Mandal M., Misra D., Ghosh N., Mandal S., and Mandal V., 2020, GC-MS analysis of anti-enterobacterial dichloromethane fraction of Mandukaparni (Hydrocotyle javanica Thunb.) – A plant from Ayurveda, Pharmacognosy Journal, 12: 1494-1503. https://doi.org/10.5530/pj.2020.12.205 Merecz-Sadowska A., Sitarek P., Śliwiński T., and Zajdel R., 2020, Anti-inflammatory activity of extracts and pure compounds derived from plants via modulation of signaling pathways, especially PI3K/AKT in macrophages, International Journal of Molecular Sciences, 21(24): 9605. https://doi.org/10.3390/ijms21249605 Ni J., Sun S.X., Zheng Y., Datta R., Sarkar D., and Li Y.M., 2018, Removal of prometryn from hydroponic media using marsh pennywort (Hydrocotyle vulgaris L.), International Journal of Phytoremediation, 20(9): 909-913. https://doi.org/10.1080/15226514.2018.1448359 Pandur E., Micalizzi G., Mondello L., Horváth A., Sipos K., and Horváth G., 2022, Antioxidant and anti-inflammatory effects of thyme (Thymus vulgaris L.) essential oils prepared at different plant phenophases on Pseudomonas aeruginosa LPS-activated THP-1 macrophages, Antioxidants, 11(7): 1330. https://doi.org/10.3390/antiox11071330 Patil S.M., Ramu R., Shirahatti P.S., Shivamallu C., and Amachawadi R.G., 2021, A systematic review on ethnopharmacology, phytochemistry and pharmacological aspects of Thymus vulgaris Linn., Heliyon, 7(5): e07054. https://doi.org/10.1016/j.heliyon.2021.e07054

RkJQdWJsaXNoZXIy MjQ4ODYzNA==