MPR_2024v14n1

Medicinal Plant Research 2024, Vol.14, No.1, 31-44 http://hortherbpublisher.com/index.php/mpr 42 Funding This work was supported by China Agriculture Research System of MOF and MARA (CARS-21); Key Research and Development Program of Henan (241111310200, 231111110800); Key project at central government level: The ability establishment of sustainable use for valuable Chinese medicine resources (2060302); Major Science and Technology Projects in Henan Province (221100310400); Henan Academy of Agricultural Sciences Emerging Discipline Development Project (2024XK01); Henan Academy of Agricultural Sciences Independent Innovation Special Fund (2024ZC040); Henan Academy of Agricultural Sciences Outstanding Youth Science and Technology Fund (2024YQ15, 2024YQ16); Henan Province Science and Technology Research Projects (232102110198, 232102110243, 232102110262, 242102110248, 242102110260); (Provincial Key Laboratory of Conservation and Utilization of Traditional Chinese Medicine Resources, Institute of Chinese Herbel Medicines, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, China). Conflict of Interest Disclosure The authors affirm that this research was conducted without any commercial or financial relationships that could be construed as a potential conflict of interest. References An L., Yuan Y., Ma J., Wang H., Piao X., Ma J., Zhang J., Zhou L., and Wu X., 2019, NMR-based metabolomics approach to investigate the distribution characteristics of metabolites in Dioscorea opposita Thunb. cv. Tiegun. Food Chemistry, 298: 125063. https://doi.org/10.1016/j.foodchem.2019.125063 Bredeson J., Lyons J., Oniyinde I., Okereke N., Kolade O., Nnabue I., Nwadili C., Hřibová E., Parker M., Nwogha J., Shu S., Carlson J., Kariba R., Muthemba S., Knop K., Barton G., Sherwood A., Lopez-Montes A., Asiedu R., Jamnadass R., Muchugi A., Goodstein D., Egesi C., Featherston J., Asfaw A., Simpson G., Doležel J., Hendre P., Deynze A., Kumar P., Obidiegwu J., Bhattacharjee R., and Rokhsar D., 2021, Chromosome evolution and the genetic basis of agronomically important traits in greater yam, Nature Communications, 13(1): 2001. https://doi.org/10.1038/s41467-022-29114-w Cao T., Sun J., Shan N., Chen X., Wang P., Zhu Q., Xiao Y., Zhang H., Zhou Q., and Huang Y., 2020, Uncovering the genetic diversity of yams ( Dioscorea spp.) in China by combining phenotypic trait and molecular marker analyses. Ecology and Evolution, 11: 9970-9986. https://doi.org/10.1002/ece3.7727 Chen M., Sun X., Xue J., Zhou Y., and Hang Y., 2022, Evolution of Reproductive Traits and Implications for Adaptation and Diversification in the Yam Genus Dioscorea L., Diversity, 14(5): 349. https://doi.org/10.3390/d14050349 Chen S.L., Sun Y.Z., Xu J., Luo H.M., Sun C., He L., Cheng X.L., Zhang B.L., and Xiao P.G., 2010, Strategies of the study on herb genome program, Yaoxue Xuebao (Acta Pharmaceutica Sinica), 45(7): 807-812. Chin H.Z., Chang M.C., Ling P.P., Ting C.T., and Dou F.P., 1985, A cytotaxonomic study on Chinese DioscoreaL.—the chromosome numbers and their relation to the origin and evolution of the genus, Journal of Systematics and Evolution, 23(1): 11. Diener A.C., Li H., Zhou W.X., Whoriskey W.J., Nes W.D., and Fink G.R., 2000, Sterol methyltransferase 1 controls the level of cholesterol in plants, The Plant Cell, 12(6): 853-870. Eulgem T., Rushton P.J., Robatzek S., and Somssich I.E., 2000, The WRKY superfamily of plant transcription factors, Trends in Plant Science, 5(5): 199-206. Ge M., Ruan Y., Liu M., Wang L., Wen C., and Ma B., 2023, Recent advances on chemical constituents fromDioscorea opposita and their biological activities, Food Nutrition Chemistry, 1(2): 1-13. https://doi.org/10.18686/fnc.v1i2.66 Han X.Y., Jiang L., Yin J.M., Jin L., and Zhang P.T., 2022, Transcriptomic and expression analysis of anthracnose resistance-related genes from yam Suyu 8, Huabei Nongxuebao (Acta Agriculturae Boreali-Sinica), 37(2): 211-222. Holmberg N., Harker M., Gibbard C.L., Wallace A.D., Clayton J.C., Rawlins S., Hellyer A., and Safford R., 2002, Sterol C-24 methyltransferase type 1 controls the flux of carbon into sterol biosynthesis in tobacco seed, Plant Physiology, 130(1): 303-311. Hou D., Cheng R., Li Z., Xu J., Ma Z., Zhao X., Xu H., Xu J., and Hou X., 2020, Transcriptome assembly and gene expression analysis of leaf and rhizome tissues of Dioscorea opposita . https://doi.org/10.21203/rs.3.rs-28829/v1 Hou J.H., Chen H.W., Gao Z.J., Dong Y.W., Zhou L.J., Zhang Y., and Cai K., 2011, Molecular phylogenetic analysis of Dioscorea opposita, Journal of Xuzhou Institute of Technology. Hu K., Chen M., Li P., Sun X., and Lu R., 2023, Intraspecific phylogeny and genomic resources development for an important medical plant Dioscorea nipponica, based on low-coverage whole genome sequencing data, Frontiers in Plant Science, 14: 1320473. https://doi.org/10.3389/fpls.2023.1320473 Huang Y., Feng C.Z., Ye Q., Wu W.H., and Chen Y.F., 2019, Correction: Arabidopsis WRKY6 transcription factor acts as a positive regulator of abscisic acid signaling during seed germination and early seedling development, PLoS genetics, 15(3): e1008032. Ishiguro S., and Nakamura K., 1994, Characterization of a cDNA encoding a novel DNA-binding protein, SPF1, that recognizes SP8 sequences in the 5′ upstream regions of genes coding for sporamin and β-amylase from sweet potato, Molecular and General Genetics MGG, 244: 563-571.

RkJQdWJsaXNoZXIy MjQ4ODYzNA==