JTSR_2025v15n1

Journal of Tea Science Research, 2025, Vol.15, No.1, 1-11 http://hortherbpublisher.com/index.php/jtsr 11 Wei C., Yang H., Wang S., Zhao J., Liu C., Gao L., Xia E., Lu Y., Tai Y., She G., Sun J., Cao H., Tong W., Gao Q., Li Y., Deng W., Jiang X., Wang W., Chen Q., Zhang S., Li H., Wu J., Wang P., Li P., Shi C., Zheng F., Jian J., Huang B., Shan D., Shi M., Fang C., Yue Y., Li F., Li D., Wei S., Han B., Jiang C., Yin Y., Xia T., Zhang Z., Bennetzen J., Zhao S., and Wan X., 2018, Draft genome sequence of Camellia sinensis var. sinensis provides insights into the evolution of the tea genome and tea quality, Proceedings of the National Academy of Sciences, 115(18): 4151-4158. https://doi.org/10.1073/pnas.1719622115 Xia E., Li F., Tong W., Li P., Wu Q., Zhao H., Ge R., Li R., Li Y., Zhang Z., Wei C., and Wan X., 2019, Tea plant information archive: a comprehensive genomics and bioinformatics platform for tea plant, Plant Biotechnology Journal, 17(10): 1938-1953. https://doi.org/10.1111/pbi.13111 Xia E., Tong W., Hou Y., An Y., Chen L., Wu Q., Liu Y., Yu J., Li F., Li R., Li P., Zhao H., Ge R., Huang J., Mallano A., Zhang Y., Liu S., Deng W., Song C., Zhang Z., Zhao J., Wei S., Zhang Z., Xia T., Wei C., and Wan X., 2020a, The reference genome of tea plant and resequencing of 81 diverse accessions provide insights into its genome evolution and adaptation, Molecular Plant, 13(7): 1013-1026. https://doi.org/10.1016/j.molp.2020.04.010 Xia E., Tong W., Wu Q., Wei S., Zhao J., Zhang Z., Wei C., and Wan X., 2020b, Tea plant genomics: achievements, challenges and perspectives, Horticulture Research, 7: 7. https://doi.org/10.1038/s41438-019-0225-4 Xia E., Zhang H., Sheng J., Li K., Zhang Q., Kim C., Zhang Y., Liu Y., Zhu T., Huang H., Tong Y., Nan H., Shi C., Shi C., Jiang J., Mao S., Jiao J., Zhang D., Zhao Y., Zhao Y., Zhang L., Liu Y., Liu B., Yu Y., Shao S., Ni D., Eichler E., and Gao L., 2017, The tea tree genome provides insights into tea flavor and independent evolution of caffeine biosynthesis, Molecular Plant, 10(6): 866-877. https://doi.org/10.1016/j.molp.2017.04.002 Xie T., Qian Y., Wang D., Yan X., Jiang Y., Li M., Rong H., and Xia T., 2024, Genome-wide analysis of the multidrug and toxic compound extrusion gene family in the tea plant, Agronomy, 14(11): 2718. https://doi.org/10.3390/agronomy14112718 Xu F., Liu W., Wang H., Alam P., Zheng W., and Faizan M., 2023, Genome identification of the tea plant (Camellia sinensis) ASMT gene family and its expression analysis under abiotic stress, Genes, 14. https://doi.org/10.3390/genes14020409 Xu L.Y., Wang L.Y., Wei K., Tan L.Q., Su J.J., and Cheng H., 2018, High-density SNP linkage map construction and QTL mapping for flavonoid-related traits in a tea plant (Camellia sinensis) using 2b-RAD sequencing, BMC Genomics, 19(1): 955. https://doi.org/10.1186/s12864-018-5291-8 Yamashita H., Uchida T., Tanaka Y., Katai H., Nagano A.J., Morita A., and Ikka T., 2020, Genomic predictions and genome-wide association studies based on RAD-seq of quality-related metabolites for the genomics-assisted breeding of tea plants, Scientific Reports, 10(1): 17480. https://doi.org/10.1038/s41598-020-74623-7 Zhang W., Zhang Y., Qiu H., Guo Y., Wan H., Zhang X., Scossa F., Alseekh S., Zhang Q., Wang P., Xu L., Schmidt M., Jia X., Li D., Zhu A., Guo F., Chen W., Ni D., Usadel B., Fernie A., and Wen W., 2020, Genome assembly of wild tea tree DASZ reveals pedigree and selection history of tea varieties, Nature Communications, 11(1): 3719. https://doi.org/10.1038/s41467-020-17498-6 Zhou C., Zhu C., Fu H., Li X., Chen L., Lin Y., Lai Z., and Guo Y., 2019, Genome-wide investigation of superoxide dismutase (SOD) gene family and their regulatory miRNAs reveal the involvement in abiotic stress and hormone response in tea plant (Camellia sinensis), PLoS One, 14(10): e0223609. https://doi.org/10.1371/journal.pone.0223609

RkJQdWJsaXNoZXIy MjQ4ODYzNA==