Journal of Tea Science Research, 2024, Vol.14, No.6, 344-352 http://hortherbpublisher.com/index.php/jtsr 351 Kausar H., Ambrin G., Okla M., Soufan W., Al-Ghamdi A., and Ahmad A., 2020, Metabolic flux analysis of catechin biosynthesis pathways using nanosensor, Antioxidants, 9(4): 288. https://doi.org/10.3390/antiox9040288 Kazimierczyk M., and Wrzesinski J., 2021, Long non-coding RNA epigenetics, International Journal of Molecular Sciences, 22(11): 6166. https://doi.org/10.3390/ijms22116166 Kondo Y., Shinjo K., and Katsushima K., 2017, Long non-coding RNAs as an epigenetic regulator in human cancers, Cancer Science, 108(10): 1927-1933. https://doi.org/10.1111/cas.13342 Li J., Liu S., Chen P., Cai J., Tang S., Yang W., Cao F., Zheng P., and Sun B., 2022a, Systematic analysis of the R2R3-MYB family in Camellia sinensis: Evidence for galloylated catechins biosynthesis regulation, Frontiers in Plant Science, 12: 782220. https://doi.org/10.3389/fpls.2021.782220 Li L., Zhang X., Li D., Su H., He Y., Xu Z., Zhao Y., Hong Y., Li Q., Xu P., and Hong G., 2024, CsPHRs-CsJAZ3 incorporates phosphate signaling and jasmonate pathway to regulate catechin biosynthesis in Camellia sinensis, Horticulture Research, 11: uhae178. https://doi.org/10.1093/hr/uhae178 Li P., Fu J., Xu Y., Shen Y., Zhang Y., Ye Z., Tong W., Zeng X., Yang J., Tang D., Li P., Zuo H., Wu Q., Xia E., Wang S., and Zhao J., 2022b, CsMYB1 integrates the regulation of trichome development and catechins biosynthesis in tea plant domestication, The New Phytologist, 234(3): 902-917. https://doi.org/10.1111/nph.18026 Luo Y., Yu S., Li J., Li Q., Wang K., Huang J., and Liu Z., 2018, Molecular characterization of WRKY transcription factors that act as negative regulators of O-methylated catechin biosynthesis in tea plants (Camellia sinensis L.), Journal of Agricultural and Food Chemistry, 66(43): 11234-11243. https://doi.org/10.1021/acs.jafc.8b02175 Rashidinejad A., Boostani S., Babazadeh A., Rehman A., Rezaei A., Akbari-Alavijeh S., Shaddel R., and Jafari S., 2021, Opportunities and challenges for the nanodelivery of green tea catechins in functional foods, Food Research International, 142: 110186. https://doi.org/10.1016/j.foodres.2021.110186 Reel P., Reel S., Pearson E., Trucco E., and Jefferson E., 2021, Using machine learning approaches for multi-omics data analysis: A review, Biotechnology Advances, 49: 107739. https://doi.org/10.1016/j.biotechadv.2021.107739 Shi M., Zhang S., Zheng Z., Maoz I., Zhang L., and Kai G., 2024, Molecular regulation of the key specialized metabolism pathways in medicinal plants, Journal of Integrative Plant Biology, 66(3): 510-531. https://doi.org/10.1111/jipb.13634 Subramanian I., Verma S., Kumar S., Jere A., and Anamika K., 2020, Multi-omics data integration, interpretation, and its application, Bioinformatics and Biology Insights, 14: 1177932219899051. https://doi.org/10.1177/1177932219899051 Tuo Y., Lu X., Tao F., Tukhvatshin M., Xiang F., Wang X., Shi Y., Lin J., and Hu Y., 2024, The potential mechanisms of catechins in tea for anti-hypertension: An integration of network pharmacology, molecular docking, and molecular dynamics simulation, Foods, 13(17): 2685. https://doi.org/10.3390/foods13172685 Valous N., Popp F., Zörnig I., Jäger D., and Charoentong P., 2024, Graph machine learning for integrated multi-omics analysis, British Journal of Cancer, 131(2): 205-211. https://doi.org/10.1038/s41416-024-02706-7 Wang W., Zhou Y., Wu Y., Dai X., Liu Y., Qian Y., Li M., Jiang X., Wang Y., Gao L., and Xia T., 2018, Insight into catechins metabolic pathways of Camellia sinensis based on genome and transcriptome analysis, Journal of Agricultural and Food Chemistry, 66(16): 4281-4293. https://doi.org/10.1021/acs.jafc.8b00946 Wei J., Huang K., Yang C., and Kang C., 2017, Non-coding RNAs as regulators in epigenetics (Review), Oncology Reports, 37(1): 3-9. https://doi.org/10.3892/or.2016.5236 Wörheide M., Krumsiek J., Kastenmüller G., and Arnold M., 2021, Multi-omics integration in biomedical research—a metabolomics-centric review, Analytica Chimica Acta, 1141: 144-162. https://doi.org/10.1016/j.aca.2020.10.038 Xiang P., Zhu Q., Tukhvatshin M., Cheng B., Tan M., Liu J., Wang X., Huang J., Gao S., Lin D., Zhang Y., Wu L., and Lin J., 2021, Light control of catechin accumulation is mediated by photosynthetic capacity in tea plant (Camellia sinensis), BMC Plant Biology, 21: 260. https://doi.org/10.1186/s12870-021-03260-7 Xu J., Li J., Liu Y., Zheng P., Liu S., and Sun B., 2024, A genus-specific R2R3 MYB transcription factor, CsMYB34, regulates galloylated catechin biosynthesis in Camellia sinensis, Plant Physiology and Biochemistry, 219: 109401. https://doi.org/10.1016/j.plaphy.2024.109401 Yu S., Li P., Zhao X., Tan M., Ahmad M., Xu Y., Tadege M., and Zhao J., 2021, CsTCPs regulate shoot tip development and catechin biosynthesis in tea plant (Camellia sinensis), Horticulture Research, 8: 73. https://doi.org/10.1038/s41438-021-00538-7 Zhang X., Li L., He Y., Lang Z., Zhao Y., Tao H., Li Q., and Hong G., 2023, The CsHSFA-CsJAZ6 module-mediated high temperature regulates flavonoid metabolism in Camellia sinensis, Plant, Cell & Environment, 46(8): 2401-2418. https://doi.org/10.1111/pce.14610
RkJQdWJsaXNoZXIy MjQ4ODYzNA==