JTSR_2024v14n6

Journal of Tea Science Research, 2024, Vol.14, No.6, 335-343 http://hortherbpublisher.com/index.php/jtsr 342 Dai X., Shi X., Yang C., Zhao X., Zhuang J., Liu Y., Gao L., and Xia T., 2022, Two UDP-glycosyltransferases catalyze the biosynthesis of bitter flavonoid 7-O-neohesperidoside through sequential glycosylation in tea plants, Journal of Agricultural and Food Chemistry, 70(3): 913-923. https://doi.org/10.1021/acs.jafc.1c07342 Fatima N., Baqri S., Bhattacharya A., Koney N., Husain K., Abbas A., and Ansari R., 2021, Role of flavonoids as epigenetic modulators in cancer prevention and therapy, Frontiers in Genetics, 12: 758733. https://doi.org/10.3389/fgene.2021.758733 Lee H., Lee S., Park S., Song J., and Kim B., 2025, Biochemical evaluation of molecular parts for flavonoid production using plant synthetic biology, Frontiers in Plant Science, 16: 1528122. https://doi.org/10.3389/fpls.2025.1528122 Li M., Guo L., Wang Y., Li Y., Jiang X., Liu Y., Xie D., Gao L., and Xia T., 2022, Molecular and biochemical characterization of two 4-coumarate:CoA ligase genes in tea plant (Camellia sinensis), Plant Molecular Biology, 109(6): 579-593. https://doi.org/10.1007/s11103-022-01269-6 Li M., Wang W., Wang Y., Guo L., Liu Y., Jiang X., Gao L., and Xia T., 2024, Duplicated CHSs (chalcone synthase) genes modulate flavonoid production in tea plants in response to light stress, Journal of Integrative Agriculture, 23(6): 1387-1400. https://doi.org/10.1016/j.jia.2024.03.060 Li Y., Zhang X., Ye J., Xu F., Zhang W., Liao Y., and Yang X., 2023, The long noncoding RNAs lnc10 and lnc11 regulating flavonoid biosynthesis in Ginkgo biloba, Plant Science, 334: 111948. https://doi.org/10.1016/j.plantsci.2023.111948 Liu S., Wang L., Cao M., Pang S., Li W., Kato-Noguchi H., Jin B., and Wang L., 2020, Identification and characterization of long non-coding RNAs regulating flavonoid biosynthesis in Ginkgo bilobaleaves, Industrial Crops and Products, 158: 112980. https://doi.org/10.1016/j.indcrop.2020.112980 Liu X., H. X., Liu X., Wang X., Chen Z., Yang J., Luo W., Li Q., Yang F., and Li F., 2025, Transcriptomic and metabolomic analyses provide insights into the flavonoid biosynthesis in Dangshen, Phytochemical Analysis, 36(5): 3492. https://doi.org/10.1002/pca.3492 Lv Y., Li D., Wu L., Zhu Y., Ye Y., Zheng X., Lu J., Liang Y., Li Q., and Ye J., 2022, Sugar signal mediates flavonoid biosynthesis in tea leaves, Horticulture Research, 9: uhac049. https://doi.org/10.1093/hr/uhac049 Meng X., Zhao X., Ding X., Li Y., Cao G., Chu Z., Su X., Liu Y., Chen X., Guo J., Cai Z., and Ding X., 2020, Integrated functional omics analysis of flavonoid related metabolism in AtMYB12 transcription factor overexpressed tomato, Journal of Agricultural and Food Chemistry, 68(36): 9651-9664. https://doi.org/10.1021/acs.jafc.0c01894 Misra P., Trivedi P., and Pandey A., 2022, Molecular components associated with the regulation of flavonoid biosynthesis, Plant Science, 317: 111196. https://doi.org/10.1016/j.plantsci.2022.111196 Nabavi S., Šamec D., Tomczyk M., Milella L., Russo D., Habtemariam S., Suntar I., Rastrelli L., Daglia M., Xiao J., Giampieri F., Battino M., Sobarzo-Sánchez E., Nabavi S., Yousefi B., Jeandet P., Xu S., and Shirooie S., 2018, Flavonoid biosynthetic pathways in plants: Versatile targets for metabolic engineering, Biotechnology Advances, 36(1): 461-485. https://doi.org/10.1016/j.biotechadv.2018.11.005 Qin S., Wei K., Cui Z., Liang Y., Li M., Gu L., Yang C., Zhou X., Li L., Xu W., Liu C., Miao J., and Zhang Z., 2020, Comparative genomics of Spatholobus suberectus and insight into flavonoid biosynthesis, Frontiers in Plant Science, 11: 528108. https://doi.org/10.3389/fpls.2020.528108 Shen N., Wang T., Gan Q., Liu S., Wang L., and Jin B., 2022, Plant flavonoids: Classification, distribution, biosynthesis, and antioxidant activity, Food Chemistry, 383: 132531. https://doi.org/10.1016/j.foodchem.2022.132531 Song S., Tao Y., Gao L., Liang H., Tang D., Lin J., Wang Y., Gmitter F., and Li C., 2022, An integrated metabolome and transcriptome analysis reveal the regulation mechanisms of flavonoid biosynthesis in a purple tea plant cultivar, Frontiers in Plant Science, 13: 880227. https://doi.org/10.3389/fpls.2022.880227 Subramanian I., Verma S., Kumar S., Jere A., and Anamika K., 2020, Multi-omics data integration, interpretation, and its application, Bioinformatics and Biology Insights, 14: 117. https://doi.org/10.1177/1177932219899051 Vandereyken K., Sifrim A., Thienpont B., and Voet T., 2023, Methods and applications for single-cell and spatial multi-omics, Nature Reviews Genetics, 24(12): 779-800. https://doi.org/10.1038/s41576-023-00580-2 Wang J., Chen C., Guo Q., Gu Y., and Shi T., 2024, Advances in flavonoid and derivative biosynthesis: Systematic strategies for the construction of yeast cell factories, ACS Synthetic Biology, 13(4): 789-803. https://doi.org/10.1021/acssynbio.4c00383 Wang W., Zhou Y., Wu Y., Dai X., Liu Y., Qian Y., Li M., Jiang X., Wang Y., Gao L., and Xia T., 2018, Insight into catechins metabolic pathways of Camellia sinensis based on genome and transcriptome analysis, Journal of Agricultural and Food Chemistry, 66(16): 4281-4293. https://doi.org/10.1021/acs.jafc.8b00946

RkJQdWJsaXNoZXIy MjQ4ODYzNA==