JTSR_2024v14n6

Journal of Tea Science Research, 2024, Vol.14, No.6, 313-321 http://hortherbpublisher.com/index.php/jtsr 320 Kottawa-Arachchi J., Gunasekare M., and Ranatunga M., 2018, Biochemical diversity of global tea [Camellia sinensis (L.) O. Kuntze] germplasm and its exploitation: a review, Genetic Resources and Crop Evolution, 66: 259-273. https://doi.org/10.1007/s10722-018-0698-2 Li C., Zhu Y., Yu Y., Zhao Q., Wang S., Wang X., Yao M., Luo D., Li X., Chen L., and Yang Y., 2015, Global transcriptome and gene regulation network for secondary metabolite biosynthesis of tea plant (Camellia sinensis), BMC Genomics, 16: 560. https://doi.org/10.1186/s12864-015-1773-0 Li H., Guo L., Yan M., Hu J., Lin Q., Wang P., Wang M., Zhao H., Wang Y., Ni D., and Guo F., 2022, A rapid and efficient transient expression system for gene function and subcellular localization studies in the tea plant (Camellia sinensis) leaves, Scientia Horticulturae, 305: 110927. https://doi.org/10.1016/j.scienta.2022.110927 Li J., Li H., Liu Z., Wang Y., Chen Y., Yang N., Hu Z., Li T., and Zhuang J., 2023, Molecular markers in tea plant (Camellia sinensis): Applications to evolution, genetic identification, and molecular breeding, Plant Physiology and Biochemistry, 198: 107704. https://doi.org/10.1016/j.plaphy.2023.107704 Liao Y., Zhou X., and Zeng L., 2021, How does tea (Camellia sinensis) produce specialized metabolites which determine its unique quality and function: a review, Critical Reviews in Food Science and Nutrition, 62: 3751-3767. https://doi.org/10.1080/10408398.2020.1868970 Liu L., Qiao D., Mi X., Yu S., Jing T., and An Y., 2024, Widely targeted metabolomics and SPME-GC-MS analysis revealed the quality characteristics of non-volatile/volatile compounds in Zheng’an Bai tea, Frontiers in Nutrition, 11: 1484257. https://doi.org/10.3389/fnut.2024.1484257 Liu W., Feng Y., Yu S., Fan Z., Li X., Li J., and Yin H., 2021, The flavonoid biosynthesis network in plants, International Journal of Molecular Sciences, 22(23): 12824. https://doi.org/10.3390/ijms222312824 Luo Q., Luo L., Zhao J., Wang Y., and Luo H., 2023, Biological potential and mechanisms of tea’s bioactive compounds: An updated review, Journal of Advanced Research, 65: 345-363. https://doi.org/10.1016/j.jare.2023.12.004 Pratyusha D., and Sarada D., 2022, MYB transcription factors—master regulators of phenylpropanoid biosynthesis and diverse developmental and stress responses, Plant Cell Reports, 41: 2245-2260. https://doi.org/10.1007/s00299-022-02927-1 Qiao D., Yang C., Chen J., Guo Y., Li Y., Niu S., Cao K., and Chen Z., 2019, Comprehensive identification of the full-length transcripts and alternative splicing related to the secondary metabolism pathways in the tea plant (Camellia sinensis), Scientific Reports, 9: 3918. https://doi.org/10.1038/s41598-019-39286-z Rajczewski A., Jagtap P., and Griffin T., 2022, An overview of technologies for MS-based proteomics-centric multi-omics, Expert Review of Proteomics, 19(2): 165-181. https://doi.org/10.1080/14789450.2022.2070476 Sanches P., De Melo N., Porcari A., and De Carvalho L., 2024, Integrating molecular perspectives: Strategies for comprehensive multi-omics integrative data analysis and machine learning applications in transcriptomics, proteomics, and metabolomics, Biology, 13(11): 848. https://doi.org/10.3390/biology13110848 Shen Y., He X., Zu F., Huang X., Yin S., Wang L., Geng F., and Cheng X., 2024, Development of genome-wide intron length polymorphism (ILP) markers in tea plant (Camellia sinensis) and related applications for genetics research, International Journal of Molecular Sciences, 25(6): 3241. https://doi.org/10.3390/ijms25063241 Thomson M., Biswas S., Tsakirpaloglou N., and Septiningsih E., 2022, Functional allele validation by gene editing to leverage the wealth of genetic resources for crop improvement, International Journal of Molecular Sciences, 23(12): 6565. https://doi.org/10.3390/ijms23126565 Vandereyken K., Sifrim A., Thienpont B., and Voet T., 2023, Methods and applications for single-cell and spatial multi-omics, Nature Reviews Genetics, 24(12): 779-800. https://doi.org/10.1038/s41576-023-00580-2 Wang J., Hu Y., Guo D., Gao T., Liu T., Jin J., Zhao M., Yu K., Tong W., Ge H., Pan Y., Zhang M., Lu M., Jing T., Du W., Tang X., Zhao C., Zhao W., Bao Z., Schwab W., Xia E., and Song C., 2024, Evolution and functional divergence of glycosyltransferase genes shaped the quality and cold tolerance of tea plants, The Plant Cell, 36(12): 5291-5313. https://doi.org/10.1093/plcell/koae268 Wang Q., Yu J., Lin W., Ahammed G., Wang W.R., Shi M., Ge S., Mohamed A., Wang L., Li Q., and Li X., 2025, L-theanine metabolism in tea plants: Biological functions and stress tolerance mechanisms, Plants, 14(3): 492. https://doi.org/10.3390/plants14030492 Wang W., Wang Y., Li H., Liu Z., Cui X., and Jing Z., 2018, Two MYB transcription factors (CsMYB2 and CsMYB26) are involved in flavonoid biosynthesis in tea plant [Camellia sinensis (L.) O. Kuntze], BMC Plant Biology, 18: 288. https://doi.org/10.1186/s12870-018-1502-3

RkJQdWJsaXNoZXIy MjQ4ODYzNA==