Journal of Tea Science Research, 2024, Vol.14, No.6, 304-312 http://hortherbpublisher.com/index.php/jtsr 311 Liu X., Cheng X., Cao J., Zhu W., Wan X., and Liu L., 2023, GOLDEN 2-LIKE transcription factors regulate chlorophyll biosynthesis and flavonoid accumulation in response to UV-B in tea plants (Camellia sinensis), Horticultural Plant Journal, in press. https://doi.org/10.1016/j.hpj.2023.04.002 Lu L., Liu J., Zhang W., Cheng X., Zhang B., Yang Y., Que Y., Li Y., and Li X., 2024, Key factors of quality formation in Wuyi black tea during processing timing, Foods, 13(9): 1373. https://doi.org/10.3390/foods13091373 Lubanga N., Massawe F., and Mayes S., 2021, Genomic and pedigree-based predictive ability for quality traits in tea (Camellia sinensis (L.) O. Kuntze), Euphytica, 217: 127. https://doi.org/10.1007/s10681-021-02774-3 Lubanga N., Massawe F., Mayes S., Gorjanc G., and Bančič J., 2022, Genomic selection strategies to increase genetic gain in tea breeding programs, The Plant Genome, 16(1): e20282. https://doi.org/10.1002/tpg2.20282 Moreira J., Aryal J., Guidry L., Adhikari A., Chen Y., Sriwattana S., and Prinyawiwatkul W., 2024, Tea quality: An overview of the analytical methods and sensory analyses used in the most recent studies, Foods, 13(22): 3580. https://doi.org/10.3390/foods13223580 Ni Z., Yang Y., Zhang Y., Hu Q., Lin J., Lin H., Hao Z., Wang Y., Zhou J., and Sun Y., 2023, Dynamic change of the carotenoid metabolic pathway profile during oolong tea processing with supplementary LED light, Food Research International, 169: 112839. https://doi.org/10.1016/j.foodres.2023.112839 Qiao D., Yang C., Chen J., Guo Y., Li Y., Niu S., Cao K., and Chen Z., 2019, Comprehensive identification of the full-length transcripts and alternative splicing related to the secondary metabolism pathways in the tea plant (Camellia sinensis), Scientific Reports, 9: 3732. https://doi.org/10.1038/s41598-019-39286-z Su H., Zhang X., He Y., Li L., Wang Y., Hong G., and Xu P., 2020, Transcriptomic analysis reveals the molecular adaptation of three major secondary metabolic pathways to multiple macronutrient starvation in tea (Camellia sinensis), Genes, 11(3): 241. https://doi.org/10.3390/genes11030241 Subramanian I., Verma S., Kumar S., Jere A., and Anamika K., 2020, Multi-omics data integration, interpretation, and its application, Bioinformatics and Biology Insights, 14: 1177932219899051. https://doi.org/10.1177/1177932219899051 Tai Y., Liu C., Yu S., Yang H., Sun J., Guo C., Huang B., Liu Z., Yuan Y., Xia E., Wei C., and Wan X., 2018, Gene co-expression network analysis reveals coordinated regulation of three characteristic secondary biosynthetic pathways in tea plant (Camellia sinensis), BMC Genomics, 19: 616. https://doi.org/10.1186/s12864-018-4999-9 Wang C., Du X., Nie C., Zhang X., Tan X., and Li Q., 2022, Evaluation of sensory and safety quality characteristics of “high mountain tea”, Food Science & Nutrition, 10: 3338-3354. https://doi.org/10.1002/fsn3.2923 Wang X., Sun M., Xiong Y., Liu X., Li C., Wang Y., and Tang X., 2024, Restriction site-associated DNA sequencing (RAD-seq) of tea plant (Camellia sinensis) in Sichuan province, China, provides insights into free amino acid and polyphenol contents of tea, PLOS ONE, 19: e0314144. https://doi.org/10.1371/journal.pone.0314144 Wang Y., Li T., Li L., Ning J., and Zhang Z., 2021, Evaluating taste-related attributes of black tea by micro-NIRS, Journal of Food Engineering, 290: 110181. https://doi.org/10.1016/j.jfoodeng.2020.110181 Wu R., Liang H., Hu N., Lu J., Li C., and Tang D., 2025, Chemical, sensory variations in black teas from six tea cultivars in Jingshan, China, Foods, 14: 91558. https://doi.org/10.3390/foods14091558 Xia E., Tong W., Wu Q., Wei S., Zhao J., Zhang Z., Wei C., and Wan X., 2020, Tea plant genomics: achievements, challenges and perspectives, Horticulture Research, 7: 7. https://doi.org/10.1038/s41438-019-0225-4 Yang J., Gu D., Wu S., Zhou X., Chen J., Liao Y., Zeng L., and Yang Z., 2021, Feasible strategies for studying the involvement of DNA methylation and histone acetylation in the stress-induced formation of quality-related metabolites in tea (Camellia sinensis), Horticulture Research, 8: 1-12. https://doi.org/10.1038/s41438-021-00679-9 Yang Y., Kim J., Chung J., Cho D., Roh J., Hong Y., Kim W., and Kang H., 2022, Variations in the composition of tea leaves and soil microbial community, Biology and Fertility of Soils, 58: 167-179. https://doi.org/10.1007/s00374-021-01615-8 Zhang C., Liu G., Chen J., Xie N., Huang J., and Shen C., 2022, Translational landscape and metabolic characteristics of the etiolated tea plant (Camellia sinensis), Scientia Horticulturae, 295: 111193. https://doi.org/10.1016/j.scienta.2022.111193 Zhang R., Yu Y., Hu X., Chen Y., He X., Wang P., Chen Q., Ho C., Wan X., Zhang Y., and Zhang S., 2020, TeaCoN: a database of gene co-expression network for tea plant (Camellia sinensis), BMC Genomics, 21: 572. https://doi.org/10.1186/s12864-020-06839-w
RkJQdWJsaXNoZXIy MjQ4ODYzNA==