JTSR_2024v14n5

Journal of Tea Science Research, 2024, Vol.14, No.5, 293-303 http://hortherbpublisher.com/index.php/jtsr 303 Samarina L.S., Matskiv A.O., Shkhalakhova R.M., Koninskaya N.G., Hanke M.V., Flachowsky H., Shumeev A., Manakhova K., Malyukova L., Liu S., Zhu J., Gvasaliya M., Malyarovskaya V., Ryndin A., Pchikhachev E., and Reim S., 2022, Genetic diversity and genome size variability in the Russian genebank collection of tea plant [Camellia sinensis (L.) O. Kuntze], Frontiers in Plant Science, 12: 800141. https://doi.org/10.3389/fpls.2021.800141 Tariq A., Meng M., Jiang X., Bolger A., Beier S., Buchmann J., Fernie A., Wen W., and Usadel B., 2024, In-depth exploration of the genomic diversity in tea varieties based on a newly constructed pangenome of Camellia sinensis, The Plant Journal, 119(4): 2096-2115. https://doi.org/10.1111/tpj.16874 Tong W., Wang Y., Li F., Zhai F., Su J., Wu D., Yi L., Gao Q., Wu Q., and Xia E., 2024, Genomic variation of 363 diverse tea accessions unveils the genetic diversity, domestication, and structural variations associated with tea adaptation, Journal of Integrative Plant Biology, 66(10): 2175-2190. https://doi.org/10.1111/jipb.13737 Tan L.Q., Zhang C.C., Qi G.N., Wang L.Y., Wei K., Chen S.X., Zou Y., Wu L.Y., and Cheng H., 2015, Heterozygosities and genetic relationship of tea cultivars revealed by simple sequence repeat markers and implications for breeding and genetic mapping programs, Genetics and Molecular Research, 14(1): 1557-1565. http://dx.doi.org/10.4238/2015.March.6.3 Wei C., Yang H., Wang S., Zhao J., Liu C., Gao L., Xia E., Lu Y., Tai Y., She G., Sun J., Cao H., Tong W., Gao Q., Li Y., Deng W., Jiang X., Wang W., Chen Q., Zhang S., Li H., Wu J., Wang P., Li P., Shi C., Zheng F., Jian J., Huang B., Shan D., Shi M., Fang C., Yue Y., Li F., Li D., Wei S., Han B., Jiang C., Yin Y., Xia T., Zhang Z., Bennetzen J., Zhao S., and Wan X., 2018, Draft genome sequence of Camellia sinensis var. sinensis provides insights into the evolution of the tea genome and tea quality, Proceedings of the National Academy of Sciences, 115(18): E4151-E4158. https://doi.org/10.1073/pnas.1719622115 Xia E., Tong W., Hou Y., An Y., Chen L., Wu Q., Liu Y., Yu J., Li F., Li R., Li P., Zhao H., Ge R., Huang J., Mallano A., Zhang Y., Liu S., Deng W., Song C., Zhang Z., Zhao J., Wei S., Zhang Z., Xia T., Wei C., and Wan X., 2020, The reference genome of tea plant and resequencing of 81 diverse accessions provide insights into its genome evolution and adaptation, Molecular Plant, 13(7): 1013-1026. https://doi.org/10.1016/j.molp.2020.04.010 Xia X., Mi X., Jin L., Guo R., Zhu J., Xie H., Liu L., An Y., Zhang C., Wei C., and Liu S., 2021, CsLAZY1 mediates shoot gravitropism and branch angle in tea plants (Camellia sinensis), BMC Plant Biology, 21(1): 243. https://doi.org/10.1186/s12870-021-03044-z Zhang F., Tian W., Cen L., Lv L., Zeng X., Chen Y., Zhao Y., and Li Y., 2022, Population structure analysis and genome-wide association study of tea (Camellia sinensis (L.) Kuntze) germplasm in Qiannan, China, based on SLAF-seq technology, Phyton, 91(4). https://doi.org/10.32604/phyton.2022.018104 Zhao Z., and Ma D., 2021, Genome-wide identification, characterization and function analysis of lineage-specific genes in the tea plant Camellia sinensis, Frontiers in Genetics, 12: 770570. https://doi.org/10.3389/fgene.2021.770570 Disclaimer/Publisher’s Note The statements, opinions, and data contained in all publications are solely those of the individual authors and contributors and do not represent the views of the publishing house and/or its editors. The publisher and/or its editors disclaim all responsibility for any harm or damage to persons or property that may result from the application of ideas, methods, instructions, or products discussed in the content. Publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

RkJQdWJsaXNoZXIy MjQ4ODYzNA==