JTSR_2024v14n4

Journal of Tea Science Research, 2024, Vol.14, No.4, 225-237 http://hortherbpublisher.com/index.php/jtsr 235 Fernandez-Gutierrez A., and Gutierrez-Gonzalez J.J., 2021, Bioinformatic-based approaches for disease-resistance gene discovery in plants, Agronomy, 11(11): 2259. https://doi.org/10.3390/agronomy11112259 Gouveia B.C., Calil I.P., Machado J.P.B., Santos A.A., and Fontes E.P., 2017, Immune receptors and co-receptors in antiviral innate immunity in plants, Frontiers in Microbiology, 7: 2139. https://doi.org/10.3389/fmicb.2016.02139 Hu Y., Zhang M., Lu M., Wu Y., Jing T., Zhao M., Zhao Y., Feng Y., Wang J., Gao T., Zhou Z., Wu B., Jiang H., Wan X., Schwab W., and Song C., 2021, Salicylic acid carboxyl glucosyltransferase UGT87E7 regulates disease resistance in Camellia sinensis, Plant Physiology, 188(3): 1507-1520. https://doi.org/10.1093/plphys/kiab569 Jeyaraj A., Wang X., Wang S., Liu S., Zhang R., Wu A., and Wei C., 2019, Identification of regulatory networks of microRNAs and their targets in response to Colletotrichum gloeosporioides in tea plant (Camellia sinensis L.), Frontiers in Plant Science, 10: 1096. https://doi.org/10.3389/fpls.2019.01096 Jiang N., Cui J., Meng J., and Luan Y., 2018, A tomato nucleotide binding sites− leucine-rich repeat gene is positively involved in plant resistance to Phytophthora infestans, Phytopathology, 108(8): 980-987. https://doi.org/10.1094/PHYTO-12-17-0389-R Jiang Z., Zhao M., Qin H., Li S., and Yang X., 2023, Genome-wide analysis of NBS-LRR genes revealed contribution of disease resistance fromSaccharum spontaneumto modern sugarcane cultivar, Frontiers in Plant Science, 14: 1091567. https://doi.org/10.3389/fpls.2023.1091567 Kadota Y., Liebrand T., Goto Y., Skłenar J., Derbyshire P., Menke F., Torres M., Molina A., Zipfel C., Coaker G., and Shirasu K., 2019, Quantitative phosphoproteomic analysis reveals common regulatory mechanisms between effector-and PAMP-triggered immunity in plants, New Phytologist, 221(4): 2160-2175. https://doi.org/10.1111/nph.15523 Karunarathna K.H.T., Mewan K.M., Weerasena O.V.D.S.J., Perera S.A.C.N., and Edirisinghe E.N.U., 2021, A functional molecular marker for detecting blister blight disease resistance in tea (Camellia sinensis L.), Plant Cell Reports, 40: 351-359. https://doi.org/10.1007/s00299-020-02637-6 Kim S.H., Qi D., Ashfield T., Helm M., and Innes R.W., 2016, Using decoys to expand the recognition specificity of a plant disease resistance protein, Science, 351(6274): 684-687. https://doi.org/10.1126/science.aad3436 Kourelis J., and Van Der Hoorn R.A., 2018, Defended to the nines: 25 years of resistance gene cloning identifies nine mechanisms for R protein function, The Plant Cell, 30(2): 285-299. https://doi.org/10.1105/tpc.17.00579 Kushalappa A.C., Yogendra K.N., and Karre S., 2016, Plant innate immune response: qualitative and quantitative resistance, Critical Reviews in Plant Sciences, 35(1): 38-55. https://doi.org/10.1080/07352689.2016.1148980 Lazar N., Mesarich C., Petit-Houdenot Y., Talbi N., Sierra-Gallay I., Zélie E., Blondeau K., Gracy J., Ollivier B., Blaise F., Rouxel T., Balesdent M., Idnurm A., Tilbeurgh H., and Fudal I., 2020, A new family of structurally conserved fungal effectors displays epistatic interactions with plant resistance proteins, PLoS Pathogens, 18(7): e1010664. https://doi.org/10.1101/2020.12.17.423041 McDowell J.M., and Woffenden B.J., 2003, Plant disease resistance genes: recent insights and potential applications, Trends in Biotechnology, 21(4): 178-183. https://doi.org/10.1016/S0167-7799(03)00053-2 Michelmore R.W., and Meyers B.C., 1998, Clusters of resistance genes in plants evolve by divergent selection and a birth-and-death process, Genome Research, 8(11): 1113-1130. https://doi.org/10.1101/gr.8.11.1113 Michelmore R., 1995, Molecular approaches to manipulation of disease resistance genes, Annual Review of Phytopathology, 33(1): 393-427. https://doi.org/10.1146/annurev.py.33.090195.002141 Miedaner T., Boeven A.L.G.C., Gaikpa D.S., Kistner M.B., and Grote C.P., 2020, Genomics-assisted breeding for quantitative disease resistances in small-grain cereals and maize, International Journal of Molecular Sciences, 21(24): 9717. https://doi.org/10.3390/ijms21249717 Ngou B.P.M., Ding P., and Jones J.D., 2022, Thirty years of resistance: Zig-zag through the plant immune system, The Plant Cell, 34(5): 1447-1478. https://doi.org/10.1093/plcell/koac041 Nguyen Q.M., Iswanto A.B.B., Son G.H., and Kim S.H., 2021, Recent advances in effector-triggered immunity in plants: New pieces in the puzzle create a different paradigm, International Journal of Molecular Sciences, 22(9): 4709. https://doi.org/10.3390/ijms22094709 Nicaise V., 2014, Crop immunity against viruses: Outcomes and future challenges, Frontiers in Plant Science, 5: 660. https://doi.org/10.3389/fpls.2014.00660 Poland J., and Rutkoski J., 2016, Advances and challenges in genomic selection for disease resistance, Annual Review of Phytopathology, 54(1): 79-98. https://doi.org/10.1146/annurev-phyto-080615-100056

RkJQdWJsaXNoZXIy MjQ4ODYzNA==