JTSR_2024v14n4

Journal of Tea Science Research, 2024, Vol.14, No.4, 202-214 http://hortherbpublisher.com/index.php/jtsr 213 Lee K.J., Lee J.R., Sebastin R., Shin M.J., Kim S.H., Cho G.T., and Hyun D.Y., 2019, Assessment of genetic diversity of tea germplasm for its management and sustainable use in Korea genebank, Forests, 10(9): 780. https://doi.org/10.3390/f10090780 Lei X., Li H., Li P., Zhang H., Han Z., Yang B., Duan Y., Njeri N., Yang D., Zheng J., Ma Y., Zhu X., and Fang W., 2023, Genome-wide association studies of Biluochun tea plant populations in Dongting mountain and comprehensive identification of candidate genes associated with core agronomic traits by four analysis models, Plants, 12(21): 3719. https://doi.org/10.3390/plants12213719 Li Y., Zou D., Shrestha N., Xu X., Wang Q., Jia W., and Wang Z., 2020, Spatiotemporal variation in leaf size and shape in response to climate, Journal of Plant Ecology, 13(1): 87-96. https://doi.org/10.1093/jpe/rtz053 Li H., Song K., Zhang X., Wang D., Dong S., Liu Y., and Yang L., 2023, Application of multi-perspectives in tea breeding and the main directions, International Journal of Molecular Sciences, 24(16): 12643. https://doi.org/10.3390/ijms241612643 Lin Y., Yu W., Zhou L., Fan X., Wang F., Wang P., Fang W., Cai C., and Ye N., 2019, Genetic diversity of oolong tea (Camellia sinensis) germplasms based on the nanofluidic array of single-nucleotide polymorphism (SNP) markers, Tree Genetics & Genomes, 16: 1-14. https://doi.org/10.1007/s11295-019-1392-z Liu C., Yu W., Cai C., Huang S., Wu H., Wang Z., Wang P., Zheng Y., Wang P., and Ye N., 2022, Genetic diversity of tea plant (Camellia sinensis (L.) Kuntze) germplasm resources in Wuyi mountain of China based on single nucleotide polymorphism (SNP) markers, Horticulturae, 8(10): 932. https://doi.org/10.3390/horticulturae8100932 Martono B., and Syafaruddin S., 2018, Genetic variability of 21 tea genotypes [Camellia sinensis (L.) O. Kuntze] based on RAPD markers, Journal of Industrial and Beverage Crops, 5(2): 77-86. https://doi.org/10.21082/JTIDP.V5N2.2018.P77-86 Meegahakumbura M., Wambulwa M., Thapa K., Li M., Li M., Möller M., Xu J., Yang J., Liu B., Ranjitkar S., Liu J., Li D., Li D., and Gao L., 2016, Indications for three independent domestication events for the tea plant (Camellia sinensis (L.) O. Kuntze) and new insights into the origin of tea germplasm in China and India revealed by nuclear microsatellites, PloS One, 11(5): e0155369. https://doi.org/10.1371/journal.pone.0155369 Nalugo R., Kaweesi T., Kawooya R., Nuwamanya E., Mugisa C., Namutebi V., Tumwine V., Turyahebwa V., and Tumuhimbise R., 2022, Physicochemical analysis of Ugandan tea (Camellia sinensis) germplasm reveals potential commercial green and black tea varieties, Journal of Crop Improvement, 37(3): 341-360. https://doi.org/10.1080/15427528.2022.2095317 Pandey A.K., Sinniah G.D., Babu A., and Tanti A., 2021, How the global tea industry copes with fungal diseases–challenges and opportunities, Plant Disease, 105(7): 1868-1879. https://doi.org/10.1094/PDIS-09-20-1945-FE Pang D., Liu Y., Sun Y., Tian Y., and Chen L., 2021, Menghai Huangye, a novel albino tea germplasm with high theanine content and a high catechin index, Plant Science, 311: 110997. https://doi.org/10.1016/j.plantsci.2021.110997 Samarina L.S., Matskiv A.O., Shkhalakhova R.M., Koninskaya N.G., Hanke M.V., Flachowsky H., Shumeev A., Manakhova K., Malyukova L., Liu S., Zhu J., Gvasaliya M., Malyarovskaya V., Ryndin A., Pchikhachev E., and Reim S., 2022, Genetic diversity and genome size variability in the Russian genebank collection of tea plant [Camellia sinensis (L.) O. Kuntze], Frontiers in Plant Science, 12: 800141. https://doi.org/10.3389/fpls.2021.800141 Taniguchi F., 2019, Genetic resources of tea in Japan: History and new direction in research, Chagyo Kenkyu Hokoku (Tea Research Journal), 128: 1-8. https://doi.org/10.5979/cha.2019.128_1 Tai Y., Liu C., Yu S., Yang H., Sun J., Guo C., Huang B., Liu Z., Yuan Y., Xia E., Wei C., and Wan X., 2018, Gene co-expression network analysis reveals coordinated regulation of three characteristic secondary biosynthetic pathways in tea plant (Camellia sinensis), BMC Genomics, 19: 1-13. https://doi.org/10.1186/s12864-018-4999-9 Wei C., Yang H., Wang S., Zhao J., Liu C., Gao L., Xia E., Lu Y., Tai Y., She G., Sun J., Cao H., Tong W., Gao Q., Li Y., Deng W., Jiang X., Wang W., Chen Q., Zhang S., Li H., Wu J., Wang P., Li P., Shi C., Zheng F., Jian J., Huang B., Shan D., Shi M., Fang C., Yue Y., Li F., Li D., Wei S., Han B., Jiang C., Yin Y., Xia T., Zhang Z., Bennetzen J., Zhao S., and Wan X., 2018, Draft genome sequence of Camellia sinensis var. sinensis provides insights into the evolution of the tea genome and tea quality, Proceedings of the National Academy of Sciences, 115(18): E4151-E4158. https://doi.org/10.1073/pnas.1719622115 Xia E.H., Tong W., Wu Q., Wei S., Zhao J., Zhang Z.Z., Wei C., and Wan X.C., 2020, Tea plant genomics: achievements, challenges and perspectives, Horticulture Research, 7: 1-13. https://doi.org/10.1038/s41438-019-0225-4 Yamashita H., Katai H., Kawaguchi L., Nagano A.J., Nakamura Y., Morita A., and Ikka T., 2019, Analyses of single nucleotide polymorphisms identified by ddRAD-seq reveal genetic structure of tea germplasm and Japanese landraces for tea breeding, PloS One, 14(8): e0220981. https://doi.org/10.1371/journal.pone.0220981

RkJQdWJsaXNoZXIy MjQ4ODYzNA==