JTSR_2024v14n3

Journal of Tea Science Research, 2024, Vol.14, No.3, 169-181 http://hortherbpublisher.com/index.php/jtsr 180 Lee J., Lee B., Chung J., Kim H., Kim E., Jung S., Lee H., Lee S., and Hong Y., 2015, Metabolomic unveiling of a diverse range of green tea (Camellia sinensis) metabolites dependent on geography, Food Chemistry, 174: 452-459. https://doi.org/10.1016/j.foodchem.2014.11.086 Li H., Lin Q., Yan M., Wang M., Wang P., Zhao H., Wang Y., Ni D., and Guo F., 2021, Relationship between secondary metabolism and miRNA for important flavor compounds in different tissues of tea plant (Camellia sinensis) as revealed by genome-wide miRNA analysis, Journal of Agricultural and Food Chemistry, 69(6): 2001-2012. https://doi.org/10.1021/acs.jafc.0c07440 Li P.H., Xia E.H., Fu J.M., Xu Y.J., Zhao X.C., Wei T., Qian T., Tadege M., Fernie A., and Zhao J., 2022, Diverse roles of MYB transcription factors in regulating secondary metabolite biosynthesis, shoot development, and stress responses in tea plants (Camellia sinensis), The Plant Journal, 110(4): 1144-1165. https://doi.org/10.1111/tpj.15729 Lin S., Chen Z., Chen T., Deng W., Wan X., and Zhang Z., 2023, Theanine metabolism and transport in tea plants (Camellia sinensis L.): advances and perspectives, Critical Reviews in Biotechnology, 43(3): 327-341. https://doi.org/10.1080/07388551.2022.2036692 Liu M., Bienfait B., Sacher O., Gasteiger J., Siezen R.J., Nauta A., and Geurts J.M., 2014, Combining chemoinformatics with bioinformatics: in silico prediction of bacterial flavor-forming pathways by a chemical systems biology approach “reverse pathway engineering”, PLOS ONE, 9(1): e84769. https://doi.org/10.1371/journal.pone.0084769 Saboon, Chaudhari S.K., Arshad S., Amjad M.S., and Akhtar M.S., 2019, Natural compounds extracted from medicinal plants and their applications, in Natural Bio-active Compounds: Volume 1: Production and Applications, 193-207. https://doi.org/10.1007/978-981-13-7154-7_7 Shao C., Zhang C., Lv Z., and Shen C., 2021, Pre-and post-harvest exposure to stress influence quality-related metabolites in fresh tea leaves (Camellia sinensis), Scientia Horticulturae, 281: 109984. https://doi.org/10.1016/J.SCIENTA.2021.109984 She G., Yu S., Li Z., Peng A., Li P., Li Y., Chang M., Liu L., Chen Q., Shi C., Sun J., Zhao J., and Wan X., 2022, Characterization of CsTSI in the biosynthesis of theanine in tea plants (Camellia sinensis), Journal of Agricultural and Food Chemistry, 70(3): 826-836. https://doi.org/10.1021/acs.jafc.1c04816 Tan X., Xie H., Yu J., Wang Y., Xu J., Xu P., and Ma B., 2022, Host genetic determinants drive compartment-specific assembly of tea plant microbiomes, Plant Biotechnology Journal, 20(11): 2174-2186. https://doi.org/10.1111/pbi.13897 Tang D., Liu M.Y., Zhang Q., Ma L., Shi Y., and Ruan J., 2020, Preferential assimilation of NH4+ over NO3− in tea plant associated with genes involved in nitrogen transportation, utilization and catechins biosynthesis, Plant Science, 291: 110369. Wang Y., Cheng X., Yang T., Su Y., Lin S., Zhang S., and Zhang Z., 2021, Nitrogen-regulated theanine and flavonoid biosynthesis in tea plant roots: Protein-level regulation revealed by multiomics analyses, Journal of Agricultural and Food Chemistry, 69(34): 10002-10016. https://doi.org/10.1021/acs.jafc.1c02589 Wang Y., Zheng P., Liu P., Song X., Guo F., Li Y., Ni D., and Jiang C., 2019, Novel insight into the role of withering process in characteristic flavor formation of teas using transcriptome analysis and metabolite profiling, Food Chemistry, 272: 313-322. https://doi.org/10.1016/j.foodchem.2018.08.013 Wen B., Luo Y., Liu D., Zhang X., Peng Z., Wang K., Li J., Huang J., and Liu Z., 2020, The R2R3-MYB transcription factor CsMYB73 negatively regulates l-Theanine biosynthesis in tea plants (Camellia sinensis L.), Plant Science, 298: 110546. https://doi.org/10.1016/j.plantsci.2020.110546 Xia E.H., Zhang H.B., Sheng J., Li K., Zhang Q., Kim C., Zhang Y., Liu Y., Zhu T., Li W., Huang H., Tong Y., Nan H., Shi C., Jiang J., Mao S., Jiao J., Zhang D., Zhao Y., Zhang L., Liu Y., Liu B., Yu Y., Shao S., Ni D.J., Eichler E., and Gao L.Z., 2017, The tea tree genome provides insights into tea flavor and independent evolution of caffeine biosynthesis, Molecular Plant, 10(6): 866-877. https://doi.org/10.1016/j.molp.2017.04.002 Yamashita H., Katai H., Ohnishi T., Morita A., Panda S.K., and Ikka T., 2021, Tissue-dependent variation profiles of tea quality-related metabolites in new shoots of tea accessions, Frontiers in Nutrition, 8: 659807. https://doi.org/10.3389/fnut.2021.659807 Yang T., Xie Y., Lu X., Yan X., Wang Y., Ma J., Cheng X., Lin S., Bao S., Wan X., Lucas W., and Zhang Z., 2021, Shading promoted theanine biosynthesis in the roots and allocation in the shoots of the tea plant (Camellia sinensis L.) cultivar Shuchazao, Journal of Agricultural and Food Chemistry, 69(16): 4795-4803. https://doi.org/10.1021/acs.jafc.1c00641 Yu X., Xiao J., Chen S., Yu Y., Ma J., Lin Y., Li R., Lin J., Fu Z., Zhou Q., Chao Q., Chen L., Yang Z., and Liu R., 2020, Metabolite signatures of diverse Camellia sinensis tea populations, Nature Communications, 11(1): 5586. https://doi.org/10.1038/s41467-020-19441-1

RkJQdWJsaXNoZXIy MjQ4ODYzNA==