JTSR_2024v14n3

Journal of Tea Science Research, 2024, Vol.14, No.3, 134-147 http://hortherbpublisher.com/index.php/jtsr 145 Jamil I.N., Remali J., Azizan K.A., Nor Muhammad N.A., Arita M., Goh H.H., and Aizat W.M., 2020, Systematic multi-omics integration (MOI) approach in plant systems biology, Frontiers in Plant Science, 11: 944. https://doi.org/10.3389/fpls.2020.00944 PMid:32754171 PMCid:PMC7371031 Jiang C.K., Ma J.Q., Apostolides Z., and Chen L., 2019, Metabolomics for a millenniums-old crop: tea plant (Camellia sinensis), Journal of Agricultural and Food Chemistry, 67(23): 6445-6457. https://doi.org/10.1021/acs.jafc.9b01356 PMid:31117495 Lee J., Kim Y., Jin S., Yoo H., Jeong S., Jeong E., and Yoon S., 2021, Q-omics: smart software for assisting oncology and cancer research, Molecules and Cells, 44(11): 843-850. https://doi.org/10.14348/molcells.2021.0169 PMid:34819397 PMCid:PMC8627836 Li C., Lin J., Hu Q., Sun Y., and Wu L., 2023, An integrated metabolomic and transcriptomic analysis reveals the dynamic changes of key metabolites and flavor formation over Tieguanyin oolong tea production, Food Chemistry: X, 20: 100952. https://doi.org/10.1016/j.fochx.2023.100952 PMid:37920364 PMCid:PMC10618703 Li H., Shi M., Ren K., Zhang L., Ye W., Zhang W., Cheng Y., and Xia X., 2022, Visual Omics: a web-based platform for omics data analysis and visualization with rich graph-tuning capabilities, Bioinformatics, 39(1): btac777. https://doi.org/10.1093/bioinformatics/btac777 PMid:36458930 PMCid:PMC9825776 Li H., Song K., Zhang X., Wang D., Dong S., Liu Y., and Yang L., 2023, Application of multi-perspectives in tea breeding and the main directions, International Journal of Molecular Sciences, 24(16): 12643. https://doi.org/10.3390/ijms241612643 PMid:37628823 PMCid:PMC10454712 Liu Z., Han Y., Zhou Y., Wang T., Lian S., and Yuan H., 2021, Transcriptomic analysis of tea plant (Camellia sinensis) revealed the co-expression network of 4111 paralogous genes and biosynthesis of quality-related key metabolites under multiple stresses, Genomics, 113(1): 908-918. https://doi.org/10.1016/j.ygeno.2020.10.023 PMid:33164828 Mahmood U., Li X., Fan Y., Chang W., Niu Y., Li J., Qu C., and Lu K., 2022, Multi-omics revolution to promote plant breeding efficiency, Frontiers in Plant Science, 13: 1062952. https://doi.org/10.3389/fpls.2022.1062952 PMid:36570904 PMCid:PMC9773847 Newsom S.N., and McCall L.I., 2018, Metabolomics: Eavesdropping on silent conversations between hosts and their unwelcome guests, PLOS Pathogens, 14(4): e1006926. https://doi.org/10.1371/journal.ppat.1006926 PMid:29621358 PMCid:PMC5886577 Pan J., Qian J., and Zhang H., 2019, OmicsX: a web server for integrated OMICS analysis, bioRxiv, 755918. https://doi.org/10.1101/755918 Pan M., and Barrangou R., 2020, Combining omics technologies with CRISPR-based genome editing to study food microbes, Current Opinion in Biotechnology, 61: 198-208. https://doi.org/10.1016/j.copbio.2019.12.027 PMid:32035346 Patt A., Siddiqui J., Zhang B., and Mathé E., 2019, Integration of metabolomics and transcriptomics to identify gene-metabolite relationships specific to phenotype, in Cancer Metabolism: Methods and Protocols, 441-468. https://doi.org/10.1007/978-1-4939-9027-6_23 PMid:30725469 Patterson E.L., Saski C., Küpper A., Beffa R., and Gaines T.A., 2019, Omics potential in herbicide-resistant weed management, Plants, 8(12): 607. https://doi.org/10.3390/plants8120607 PMid:31847327 PMCid:PMC6963460 Pinu F.R., Beale D.J., Paten A.M., Kouremenos K., Swarup S., Schirra H.J., and Wishart D., 2019, Systems biology and multi-omics integration: viewpoints from the metabolomics research community, Metabolites, 9(4): 76. https://doi.org/10.3390/metabo9040076 PMid:31003499 PMCid:PMC6523452 Przhilenskiy V.I., 2022, Legal and ethical expertise of genetic research: issues of regulation and institutionalization, Medical Ethics, (2): 12-15. https://doi.org/10.24075/medet.2022.043

RkJQdWJsaXNoZXIy MjQ4ODYzNA==