JTSR_2024v14n2

Journal of Tea Science Research, 2024, Vol.14, No.2, 79-91 http://hortherbpublisher.com/index.php/jtsr 90 Kronenberg Z.N., Hall R.J., Hiendleder S., Smith T.P., Sullivan S.T., Williams J.L., and Kingan S.B., 2018, FALCON-Phase: integrating PacBio and Hi-C data for phased diploid genomes, BioRxiv, 327064. https://doi.org/10.1101/327064 Lee C.H., and Carroll B.J., 2018, Evolution and diversification of small RNA pathways in flowering plants, Plant and Cell Physiology, 59(11): 2169-2187. https://doi.org/10.1093/pcp/pcy167 PMCid:PMC6454791 Li F.D., Tong W., Xia E.H., and Wei C.L., 2019, Optimized sequencing depth and de novo assembler for deeply reconstructing the transcriptome of the tea plant, an economically important plant species, BMC Bioinformatics, 20: 1-11. https://doi.org/10.1186/s12859-019-3166-x PMid:31694521 PMCid:PMC6836513 Mgwatyu Y., Cornelissen S., van Heusden P., Stander A., Ranketse M., and Hesse U., 2022, Establishing MinION sequencing and genome assembly procedures for the analysis of the rooibos ( Aspalathus linearis) genome, Plants, 11(16): 2156. https://doi.org/10.3390/plants11162156 PMid:36015459 PMCid:PMC9416007 Ou S., Su W., Liao Y., Chougule K., Agda J., Hellinga A., Lugo C., Elliott T., Ware D., Peterson T., Jiang N., Hirsch C., and Hufford M., 2019, Benchmarking transposable element annotation methods for creation of a streamlined, comprehensive pipeline, Genome Biology, 20: 1-18. https://doi.org/10.1186/s13059-019-1905-y PMid:31843001 PMCid:PMC6913007 Shi C., Yang H., Wei C., Yu O., Zhang Z., Jiang C., Sun J., Li Y., Chen Q., Xia T., and Wan X., 2011, Deep sequencing of the Camellia sinensistranscriptome revealed candidate genes for major metabolic pathways of tea-specific compounds, BMC Genomics, 12: 1-19. https://doi.org/10.1186/1471-2164-12-131 Speranskaya A.S., Khafizov K., Ayginin A.A., Krinitsina A.A., Omelchenko D.O., Nilova M.V., Severova E., Samokhina E., Shipulin G., and Logacheva M., 2018, Comparative analysis of Illumina and Ion Torrent high-throughput sequencing platforms for identification of plant components in herbal teas, Food Control, 93: 315-324. https://doi.org/10.1016/J.FOODCONT.2018.04.040 Wang F., Chen Z., Pei H., Guo Z., Wen D., Liu R., and Song B., 2021, Transcriptome profiling analysis of tea plant ( Camellia sinensis) using Oxford Nanopore long-read RNA-Seq technology, Gene, 769: 145247. https://doi.org/10.1016/j.gene.2020.145247 PMid:33096183 Wei C., Yang H., Wang S., Zhao J., Liu C., Gao L., Xia E., Lu Y., Tai Y., She G., Sun J., Cao H., Tong W., Gao Q., Li Y., Deng W., Jiang X., Wang W., Chen Q., Zhang S., Li H., Wu J., Wang P., Li P., Shi C., Zheng F., Jian J., Huang B., Shan D., Shi M., Fang C., Yue Y., Li F., Li D., Wei S., Han B., Jiang C., Yin Y., Xia T., Zhang Z., Bennetzen J., Zhao S., and Wan X., 2018, Draft genome sequence of Camellia sinensisvar. sinensisprovides insights into the evolution of the tea genome and tea quality, Proceedings of the National Academy of Sciences, 115(18): E4151-E4158. https://doi.org/10.1073/pnas.1719622115 PMid:29678829 PMCid:PMC5939082 Xia E., Tong W., Hou Y., An Y., Chen L., Wu Q., Liu Y., Yu J., Li F., Li R., Li P., Zhao H., Ge R., Huang J., Mallano A., Zhang Y., Liu S., Deng W., Song C., Zhang Z., Zhao J., Wei S., Zhang Z., Xia T., Wei C., and Wan X., 2020a, The reference genome of tea plant and resequencing of 81 diverse accessions provide insights into its genome evolution and adaptation, Molecular Plant, 13(7): 1013-1026. https://doi.org/10.1016/j.molp.2020.04.010 PMid:32353625 Xia E., Tong W., Wu Q., Wei S., Zhao J., Zhang Z., Wei C., and Wan X., 2020b, Tea plant genomics: achievements, challenges and perspectives, Horticulture Research, 7. https://doi.org/10.1038/s41438-019-0225-4 Xia E., Zhang H., Sheng J., Li K., Zhang Q., Kim C., Zhang Y., Liu Y., Zhu T., Li W., Huang H., Tong Y., Nan H., Shi C., Shi C., Jiang J., Mao S., Jiao J., Zhang D., Zhao Y., Zhao Y., Zhang L., Liu Y., Liu B., Yu Y., Shao S., Ni D., Eichler E., and Gao L., 2017, The tea tree genome provides insights into tea flavor and independent evolution of caffeine biosynthesis, Molecular Plant, 10(6): 866-877. https://doi.org/10.1016/j.molp.2017.04.002 Yamashita H., Uchida T., Tanaka Y., Katai H., Nagano A.J., Morita A., and Ikka T., 2020, Genomic predictions and genome-wide association studies based on RAD-seq of quality-related metabolites for the genomics-assisted breeding of tea plants, Scientific Reports, 10(1): 17480. https://doi.org/10.1038/s41598-020-74623-7 Yuan B.F., 2019, Assessment of DNA epigenetic modifications, Chemical Research in Toxicology, 33(3): 695-708. https://doi.org/10.1021/acs.chemrestox.9b00372 PMid:31690070 Zhang W., Luo C., Scossa F., Zhang Q., Usadel B., Fernie A., Mei H., and Wen W., 2020a, A phased genome based on single sperm sequencing reveals crossover pattern and complex relatedness in tea plants, The Plant Journal, 105(1): 197-208. https://doi.org/10.1111/tpj.15051 PMid:33118252

RkJQdWJsaXNoZXIy MjQ4ODYzNA==