JTSR_2024v14n1

Journal of Tea Science Research, 2024, Vol.14, No.1, 64-78 http://hortherbpublisher.com/index.php/jtsr 78 Wei C., Yang H., Wang S., Zhao J., Liu C., Gao L., Xia E., Lu Y., Tai Y., She G., Sun J., Cao H., Tong W., Gao Q., Li Y., Deng W., Jiang X., Wang W., Chen Q., Zhang S., Li H., Wu J., Wang P., Li P., Shi C., Zheng F., Jian J., Huang B., Shan D., Shi M., Fang C., Yue Y., Li F., Li D., Wei S., Han B., Jiang C., Yin Y., Xia T., Zhang Z., Bennetzen J., Zhao S., and Wan X., 2018, Draft genome sequence of Camellia sinensis var. sinensis provides insights into the evolution of the tea genome and tea quality. Proceedings of the National Academy of Sciences of the United States of America, 115(18): E4151-E4158. https://doi.org/10.1073/pnas.1719622115 Wu Q., Tong W., Zhao H., Ge R., Li R., Huang J., Li F., Wang Y., Ali I., Deng W., Wang W., Wan X., Zhang Z., and Xia E., 2022, Comparative transcriptomic analysis unveils the deep phylogeny and secondary metabolite evolution of 116Camellia plants, The Plant Journal, 111(2): 406-421. https://doi.org/10.1111/tpj.15799 Wu Y., Müller M., Bai T., Yao S., Gailing O., and Liu Z., 2019, Transcriptome profiling in Camellia japonica var. decumbens for the discovery of genes involved in chilling tolerance under cold stress, Annals of Forest Research. https://doi.org/10.15287/AFR.2018.1311 Xia E., Tong W., Hou Y., An Y., Chen L., Wu Q., Liu Y., Yu J., Li F., Li R., Li P., Zhao H., Ge R., Huang J., Mallano A., Zhang Y., Liu S., Deng W., Song C., Zhang Z., Zhao J., Wei S., Zhang Z., Xia T., Wei C., and Wan X., 2020, The reference genome of tea plant and resequencing of 81 diverse accessions provide insights into genome evolution and adaptation of tea plants, Molecular Plant, 13(7): 1013-1026. https://doi.org/10.1016/j.molp.2020.04.010 Xu J., Xu Y., Yonezawa T., Li L., Hasegawa M., Lu F., Chen J., and Zhang W., 2015, Polymorphism and evolution of ribosomal DNA in tea (Camellia sinensis, Theaceae), Molecular Phylogenetics and Evolution, 89: 63-72. https://doi.org/10.1016/j.ympev.2015.03.020 Xu Y., Liu Y., Yu Z., and Jia X., 2023, Complete Chloroplast Genome Sequence of the Long Blooming Cultivar Camellia ‘Xiari Qixin’: Genome Features, Comparative and Phylogenetic Analysis. Genes, 14(2): 460. https://doi.org/10.3390/genes14020460 Yan C., Lin P., Lyu T., Hu Z., Fan Z., Li X., Yao X., Li J., and Yin H., 2018, Unraveling the Roles of Regulatory Genes during Domestication of Cultivated Camellia: Evidence and Insights from Comparative and Evolutionary Genomics, Genes, Unraveling the roles of regulatory genes during domestication of cultivated Camellia: evidence and insights from comparative and evolutionary genomics, Genes, 9(10): 488. https://doi.org/10.3390/genes9100488 Yang J., Yang S., Li H., Yang J., and Li D., 2013, Comparative Chloroplast Genomes of Camellia Species. PLoS ONE, 8(8): e73053. Yi L., Wang Y., Li Y., Zhang D., and Tong W., 2024, Characterization of the complete chloroplast genome sequence of Camellia tetracocca (Theaceae). Mitochondrial DNA Part B, 9(4), 461-464. Yu X., Xiao J., Chen S., Yu Y., Ma J., Lin Y., Li R., Lin J., Fu Z., Zhou Q., Chao Q., Chen L., Yang Z., and Liu R., 2020, Metabolite signatures of diverse Camellia sinensis tea populations, Nature Communications, 11(1): 5586. https://doi.org/10.1038/s41467-020-19441-1 Zhang M., Tang Y., Xu Y., Yonezawa T., Shao Y., Wang Y., Song Z., Yang J., and Zhang W., 2020, Concerted and birth-and-death evolution of 26S ribosomal DNA in Camellia L., Annals of Botany, 127(1): 63-73. https://doi.org/10.1093/aob/mcaa169 Zhang W., Zhao Y., Yang G., Peng J., Chen S., and Xu Z., 2019, Determination of the evolutionary pressure on Camellia oleifera on Hainan Island using the complete chloroplast genome sequence, PeerJ, 7: e7210. https://doi.org/10.7717/peerj.7210 Zhang X., Chen S., Shi L., Gong D., Zhang S., Zhao Q., Zhan D., Vasseur L., Wang Y., Yu J., Liao Z., Xu X., Qi R., Wang W., Ma Y., Wang P., Ye N., Ma D., Shi Y., Wang H., Ma X., Kong X., Lin J., Wei L., Ma Y., Li R., Hu G., He H., Zhang L., Ming R., Wang G., Tang H., and You M., 2021, Haplotype-resolved genome assembly provides insights into evolutionary history of the tea plant Camellia sinensis. Nature Genetics, 53: 1250-1259. https://doi.org/10.1038/s41588-021-00895-y Zhao D., Hodkinson T., and Parnell J., 2023, Phylogenetics of global Camellia (Theaceae) based on three nuclear regions and its implications for systematics and evolutionary history, Journal of Systematics and Evolution, 61(2): 356-368. https://doi.org/10.1111/jse.12837 Zhao Z., and Ma D., 2021, Genome-wide identification, characterization and function analysis of lineage-specific genes in the tea plant Camellia sinensis, Frontiers in Genetics, 12: 770570. https://doi.org/10.3389/fgene.2021.770570 Disclaimer/Publisher’s Note The statements, opinions, and data contained in all publications are solely those of the individual authors and contributors and do not represent the views of the publishing house and/or its editors. The publisher and/or its editors disclaim all responsibility for any harm or damage to persons or property that may result from the application of ideas, methods, instructions, or products discussed in the content. Publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

RkJQdWJsaXNoZXIy MjQ4ODYzNA==