JTSR_2024v14n1

Journal of Tea Science Research, 2024, Vol.14, No.1, 64-78 http://hortherbpublisher.com/index.php/jtsr 77 Conflict of Interest Disclosure The authors affirm that this research was conducted without any commercial or financial relationships that could be construed as a potential conflict of interest. References An Y., Mi X., Zhao S., Guo R., Xia X., Liu S., and Wei C., 2020, Revealing distinctions in genetic diversity and adaptive evolution between two varieties of Camellia sinensis by whole-genome resequencing, Frontiers in Plant Science, 11: 603819. https://doi.org/10.3389/fpls.2020.603819 Bajpai R., and Chaturvedi R., 2023, In vitro production of doubled haploid plants in Camellia spp. and assessment of homozygosity using microsatellite markers, Journal of Biotechnology, 361: 89-98. https://doi.org/10.1016/j.jbiotec.2022.11.019 Cheng L., Li M., Han Q., Qiao Z., Hao Y., Balbuena T.S., and Zhao Y., 2022, Phylogenomics resolves the phylogeny of Theaceae by using low-copy and multi-copy nuclear gene makers and uncovers a fast radiation event contributing to tea plants diversity, Biology, 11(7): 1007. https://doi.org/10.3390/biology11071007 Gao Q., Tong W., Li F., Wang Y., Wu Q., Wan X., and Xia E., 2023, TPIA2: an updated tea plant information archive for Camellia genomics, Nucleic Acids Research, 52(D1): D1661-D1667. https://doi.org/10.1093/nar/gkad701 Huang H., Shi C., Liu Y., Mao S., and Gao L., 2014, Thirteen Camelliachloroplast genome sequences determined by high-throughput sequencing: genome structure and phylogenetic relationships, BMC Evolutionary Biology, 14: 1-17. https://doi.org/10.1186/1471-2148-14-151 Huang H., Tong Y., Zhang Q., and Gao L., 2013, Genome size variation among and within Camellia species by using flow cytometric analysis, PLoS One, 8(5): e64981. https://doi.org/10.1371/journal.pone.0064981 Li J., Tang H., Luo H., Tang J., Zhong N., and Xiao L., 2023, Complete mitochondrial genome assembly and comparison of Camellia sinensis var. Assamica cv. Duntsa, Frontiers in Plant Science, 14: 1117002. https://doi.org/10.3389/fpls.2023.1117002 Li L., Hu Y., He M., Zhang B., Wu W., Cai P., Huo D., and Hong Y., 2021a, Comparative chloroplast genomes: insights into the evolution of the chloroplast genome of Camellia sinensis and the phylogeny of Camellia. BMC genomics, 22: 1-22. https://doi.org/10.1186/s12864-021-07427-2 Li Q., Su X., Ma H., Du K., Yang M., Chen B., Fu S., Fu T., Xiang C., Zhao Q., and Xu L., 2021b, Development of genic SSR marker resources from RNA-seq data in Camellia japonica and their application in the genus Camellia. Scientific Reports, 11(1): 9919. https://doi.org/10.1038/s41598-021-89350-w Li W., Zhang C., Guo X., Liu Q., and Wang K., 2019, Complete chloroplast genome of Camellia japonica genome structures, comparative and phylogenetic analysis, PLoS ONE, 14(5): e0216645. https://doi.org/10.1371/journal.pone.0216645 Lin P., Yin H., Wang K., Gao H., Liu L., and Yao X., 2022, Comparative genomic analysis uncovers the chloroplast genome variation and phylogenetic relationships of Camellia species. Biomolecules, 12(10): 1474. https://doi.org/10.3390/biom12101474 Liu S., An Y., Li F., Li S., Liu L., Zhou Q., Zhao S., and Wei C., 2018, Genome-wide identification of simple sequence repeats and development of polymorphic SSR markers for genetic studies in tea plant (Camellia sinensis), Molecular Breeding, 38: 1-13. https://doi.org/10.1007/s11032-018-0824-z Lu C., Gao L., and Zhang Q., 2022, A high-quality genome assembly of the mitochondrial genome of the oil-tea tree Camellia gigantocarpa (Theaceae). Diversity, 14(10): 850. https://doi.org/10.3390/d14100850 Majumder S., Ghosh A., and Bhattacharya M., 2020, Natural anti-inflammatory terpenoids in Camellia japonica leaf and probable biosynthesis pathways of the metabolome. Bulletin of the National Research Centre, 44: 1-14. https://doi.org/10.1186/s42269-020-00397-7 Shen T., Huang B., Xu M., Zhou P., Ni Z., Gong C., Wen Q., Cao F., and Xu L., 2022, The reference genome of Camellia chekiangoleosa provides insights into Camellia evolution and tea oil biosynthesis. Horticulture Research, 9: uhab083. https://doi.org/10.1093/hr/uhab083 Supple M., and Shapiro B., 2018, Conservation of biodiversity in the genomics era. Genome Biology, 19: 1-12. https://doi.org/10.1186/s13059-018-1520-3 Uribe-Convers S., Settles M., and Tank D., 2016, A phylogenomic approach based on PCR target enrichment and high throughput sequencing: Resolving the diversity within the South American species of Bartsia L.(Orobanchaceae), PLoS One, 11(2): e0148203. https://doi.org/10.1371/journal.pone.0148203 Wang X., Feng H., Chang Y., Ma C., Wang L., Hao X., Li A., Cheng H., Wang L., Cui P., Jin J., Wang X., Wei K., Ai C., Zhao S., Wu Z., Li Y., Liu B., Wang G., Chen L., Ruan J., and Yang Y., 2020, Population sequencing enhances understanding of tea plant evolution, Nature Communications, 11(1): 4447.

RkJQdWJsaXNoZXIy MjQ4ODYzNA==