JTSR_2024v14n1

Journal of Tea Science Research, 2024, Vol.14, No.1, 19-43 http://hortherbpublisher.com/index.php/jtsr 42 Wan J., Feng M., Pan W., Zheng X., Xie X., Hu B., Teng C., Wang Y., Liu Z., Wu J., and Cai S., 2021, Inhibitory effects of six types of tea on aging and high-fat diet-related amyloid formation activities. Antioxidants, 10, Article 1513. https://doi.org/10.3390/antiox10101513 Wang Y., Kan Z., Thompson H.J., Ling T., Ho C.T., Li D., and Wan X., 2018, Impact of six typical processing methods on the chemical composition of tea leaves using a single Camellia sinensis cultivar, Longjing 43. Journal of Agricultural and Food Chemistry, 67, 5423-5436. https://doi.org/10.1021/acs.jafc.8b05140 Wong M., Sirisena S., and Ng K., 2022, Phytochemical profile of differently processed tea: A review. Journal of Food Science, 87, 1925-1942. https://doi.org/10.1111/1750-3841.16137 Xia X., Wang X., Wang H., Lin Z., Shao K., Xu J., and Zhao Y., 2021, Ameliorative effect of white tea from 50-year-old tree of Camellia sinensis L.Theaceae) on kidney damage in diabetic mice via SIRT1/AMPK pathway. Journal of Ethnopharmacology, 272, Article 113919. https://doi.org/10.1016/j.jep.2021.113919 Xie D., Dai W., Lu M., Tan J., Zhang Y., Chen M., and Lin Z., 2019, Nontargeted metabolomics predicts the storage duration of white teas with 8-C N-ethyl-2-pyrrolidinone-substituted flavan-3-ols as marker compounds. Food research International, 125, Article 108635. https://doi.org/10.1016/j.foodres.2019.108635 Xu P., Chen L., and Wang Y., 2019, Effect of storage time on antioxidant activity and inhibition on α-Amylase and α-glucosidase of white tea. Food Science and Nutrition, 7, 636-644. https://doi.org/10.1002/fsn3.899 Xu Y.Q., Zou C., Gao Y., Chen J.X., Wang F., Chen G.S., and Yin J.F., 2017, Effect of the type of brewing water on the chemical composition, sensory quality and antioxidant capacity of Chinese teas. Food chemistry, 236, 142-151. https://doi.org/10.1016/j.foodchem.2016.11.110 Yan S., Zhou Z., Wang K., Song S., Shao H., and Yang X., 2020, Chemical profile and antioxidant potential of extractable and non-extractable polyphenols in commercial teas at different fermentation degrees. Journal of Food Processing and Preservation, 44, Article e14487. https://doi.org/10.1111/jfpp.14487 Yang C., Hu Z., Lu M., Li P., Tan J., Chen M., Lv H., Zhu Y., Zhang Y., and Guo L., 2018, Application of metabolomics profiling in the analysis of metabolites and taste quality in different subtypes of white tea. Food Research International, 106, 909-919. https://doi.org/10.1016/j.foodres.2018.01.069 Yi R., Wei Y., Tan F., Mu J., Long X., Pan Y., Liu W., and Zhao X., 2020, Antioxidant capacity-related preventive effects of Shoumei slightly fermented ( Camellia sinensis) polyphenols against hepatic injury. Oxidative Medicine and Cellular Longevity, Article 9329356. https://doi.org/10.1155/2020/9329356 Yin Z., Zheng T., Ho C.T., Huang Q., Wu Q., and Zhang M., 2022, Improving the stability and bioavailability of tea polyphenols by encapsulations: a review. Food Science and Human Wellness, 11: 537-556. https://doi.org/10.1016/j.fshw.2021.12.011 Yue, W., Sun, W., Rao, R. S. P., Ye, N., Yang, Z., and Chen, M., 2019, Non-targeted metabolomics reveals distinct chemical compositions among different grades of Bai Mudan white tea. Food Chemistry, 277: 289-297. https://doi.org/10.1016/j.foodchem.2018.10.113 Zeng L., Ma M., Li C., and Luo L., 2017, Stability of tea polyphenols solution with different pH at different temperatures, International Journal of Food Properties, 20: 1-18. https://doi.org/10.1080/10942912.2014.983605 Zhang H., Jiang Y., Lv Y., Pan J., Duan Y., Huang Y., Zhu Y., Zhang S., and Geng K., 2017a, Effect of water quality on the main components in Fuding white tea infusions. Journal of Food Science and Technology, 54(5): 1206-1211. https://doi.org/10.1007/s13197-017-2571-2 Zhang H., Li Y., Lv Y., Jiang Y., Pan J., Duan Y., Zhu Y., and Zhang S., 2017b, Influence of brewing conditions on taste components in Fuding white tea infusions, Journal of the Science of Food and Agriculture, 97: 2826-2833. https://doi.org/10.1002/jsfa.8111 Zhang Q., Zhang J., Zhang J., Xu D., Li Y., Liu Y., Zhang X., Zhang R., Wu Z., and Weng P., 2021, Antimicrobial effect of tea polyphenols against foodborne pathogens: A review. Journal of Food Protection, 84: 1801-1808. https://doi.org/10.4315/JFP-21-043 Zhao C.N., Tang G.Y., Cao S.Y., Xu X.Y., Gan R.Y., Liu Q., Mao Q.Q., Shang A., and Li H.B., 2019, Phenolic profiles and antioxidant activities of 30 tea infusions from green, black, oolong, white, yellow and dark teas. Antioxidants, 8, Article 215. https://doi.org/10.3390/antiox8070215 Zhao C., Yang C., Wai S.T.C., Zhang Y., P. Portillo M., Paoli P., Wu Y., San Cheang W., Liu B., and Carpéné C., 2019, Regulation of glucose metabolism by bioactive phytochemicals for the management of type 2 diabetes mellitus. Critical Reviews in Food Science and Nutrition, 59: 830-847. Zhao F., Chen M., Jin S., Wang S., Yue W., Zhang L., and Ye N., 2022, Macro-composition quantification combined with metabolomics analysis uncovered key dynamic chemical changes of aging white tea, Food Chemistry, 366, Article 130593. https://doi.org/10.1080/10408398.2018.1501658

RkJQdWJsaXNoZXIy MjQ4ODYzNA==