JTSR_2024v14n1

Journal of Tea Science Research, 2024, Vol.14, No.1, 19-43 http://hortherbpublisher.com/index.php/jtsr 37 Carloni P., Tiano L., Padella L., Bacchetti T., Customu C., Kay A., and Damiani E., 2013, Antioxidant activity of white, green and black tea obtained from the same tea cultivar. Food Research International, 53, 900-908. https://doi.org/10.1016/j.foodres.2012.07.057 Castiglioni S., Damiani E., Astolfi P., and Carloni P., 2015, Influence of steeping conditions time, temperature, and particle size) on antioxidant properties and sensory attributes of some white and green teas. International Journal of Food Sciences and Nutrition, 66: 491-497. https://doi.org/10.3109/09637486.2015.1042842 Chen Z., Zhou H., Chen X., Lin N., He P., and Tu Y., 2020a, Taste quantitative evaluation of Fuding white tea, Journal of Zhejiang University Agriculture and Life Sciences), 46: 334-343. Chen Q., Shi J., Mu B., Chen Z., Dai W., and Lin Z., 2020b, Metabolomics combined with proteomics provides a novel interpretation of the changes in nonvolatile compounds during white tea processing. Food Chemistry, 332, Article 127412. https://doi.org/10.1016/j.foodchem.2020.127412 Dai W., Tan J., Lu M., Zhu Y., Li P., Peng Q., Guo L., Zhang Y., Xie D., and Hu Z., 2018, Metabolomics investigation reveals that 8-CN-ethyl-2-pyrrolidinone-substituted flavan-3-ols are potential marker compounds of stored white teas. Journal of Agricultural and Food Chemistry, 66, 7209-7218. https://doi.org/10.1021/acs.jafc.8b02038 Dai W., Xie D., Lu M., Li P., Lv H., Yang C., Peng Q., Zhu Y., Guo L., and Zhang Y., 2017, Characterization of white tea metabolome: Comparison against green and black tea by a nontargeted metabolomics approach. Food Research International, 96, 40-45. https://doi.org/10.1016/j.foodres.2017.03.028 Damhuji D., Suryana B., and Ayatullah M.I., 2022, Antibacterial effects of steeped white tea, black tea, and green tea against Streptococcus mutans and plaque accumulation. Macedonian Journal of Medical Sciences, 10, 472-477. https://doi.org/10.3889/oamjms.2022.8698 Damiani E., Bacchetti T., Padella L., Tiano L., and Carloni P., 2014, Antioxidant activity of different white teas: Comparison of hot and cold tea infusions. Journal of Food Composition and Analysis, 33: 59-66. https://doi.org/10.1016/j.jfca.2013.09.010 Daokar S.G., Kagne K.S., Pawar K.S., Wahane K.D., Thorat T.V., Mahakale C.R., Kumari S., and Rathi S.V., 2020, The comparative evaluation of the effects of antioxidants pretreatment on remineralization of demineralized dentin-In vitro study, Journal of Interdisciplinary Dentistry, 10: 67-73. https://doi.org/10.4103/jid.jid_10_20 de Carvalho Rodrigues V., da Silva M.V., dos Santos A.R., Zielinski A.A., and Haminiuk C.W., 2015, Evaluation of hot and cold extraction of bioactive compounds in teas, International Journal of Food Science and Technology, 50: 2038-2045. https://doi.org/10.1111/ijfs.12858 de la Fuente Muñoz M., de la Fuente Fernández M., Román-Carmena M., Iglesias de la Cruz M.d.C., Amor S., Martorell P., Enrique-López M., García-Villalón, A.L., Inarejos-García A.M., and Granado M., 2022, Supplementation with two new standardized tea extracts prevents the development of hypertension in mice with metabolic syndrome. Antioxidants, 11, Article 1573. https://doi.org/10.3390/antiox11081573 Dhatwalia S.K., Kumar M., Bhardwaj P., and Dhawan D., 2019, White tea-a cost effective alternative to EGCG in fight against benzo(a)pyrene (BaP) induced lung toxicity in SD rats. Food and Chemical Toxicology, 131, Article 110551. https://doi.org/10.1016/j.fct.2019.05.059 Dias T.R., Carrageta D.F., Alves M.G., Oliveira P.F., and Silva B.M., 2019, White tea. In S. M. Nabavi and A. S.s Silva (Eds.), Nonvitamin and Nonmineral Nutritional Supplements pp. 437-445, Elsevier Inc. https://doi.org/10.1016/C2016-0-03546-5 Digel I., Kern I., Geenen E.M., and Akimbekov N., 2020, Dental plaque removal by ultrasonic toothbrushes, Dentistry Journal, 8(1): 28 https://doi.org/10.3390/dj8010028 El Sayed M., and Roushdy R., 2023, Evaluation of remineralizing potential of white tea and green tea on artificially demineralized dentin in-vitro study, Ahram Canadian Dental Journal, 2: 37-49. https://doi.org/10.21608/acdj.2023.309855 Fan F.Y., Huang C.S., Tong Y.L., Guo H.W., Zhou S.J., Ye J.H., and Gong S.Y., 2021, Widely targeted metabolomics analysis of white peony teas with different storage time and association with sensory attributes, Food Chemistry, 362: 130257. https://doi.org/10.1016/j.foodchem.2021.130257 Fang R., Redfern S.P., Kirkup D., Porter E.A., Kite G.C., Terry L.A., Berry M.J., and Simmonds M.S., 2017, Variation of theanine, phenolic, and methylxanthine compounds in 21 cultivars of Camellia sinensis harvested in different seasons, Food Chemistry, 220: 517-526. https://doi.org/10.1016/j.foodchem.2016.09.047 Ferreira M., Lima L., Cota L., Costa M., Orsi P., Espíndola R., Albanez A., Rosa B., Carvalho M., and Garcia J., 2020, Effect of Camellia sinensis teas on left ventricular hypertrophy and insulin resistance in dyslipidemic mice, Brazilian Journal of Medical and Biological Research, 53: e9303. https://doi.org/10.1590/1414-431x20209303 Guo H., Fu M.X., Wu D.T., Zhao Y.X., Li H., Li H.B., and Gan R.Y., 2021, Structural characteristics of crude polysaccharides from 12 selected chinese teas, and their antioxidant and anti-diabetic activities, Antioxidants, 10(10): 1562. https://doi.org/10.3390/antiox10101562

RkJQdWJsaXNoZXIy MjQ4ODYzNA==