International Journal of Horticulture, 2025, Vol.15, No.4, 162-170 http://hortherbpublisher.com/index.php/ijh 170 Niwa Y., Ito S., Nakamichi N., Mizoguchi T., Niinuma K., Yamashino T., and Mizuno T., 2007, Genetic linkages of the circadian clock-associated genes, TOC1, CCA1 and LHY, in the photoperiodic control of flowering time in Arabidopsis thaliana, Plant and Cell Physiology, 48(7): 925-937. https://doi.org/10.1093/pcp/pcm067 Patrick R., Huang X., Dudareva N., and Li Y., 2023, Rhythmic histone acetylation acts in concert with day-night oscillation of the floral volatile metabolic network, The New Phytologist. https://doi.org/10.1111/nph.19447 Prieto-Benítez S., Dötterl S., and Giménez-Benavides L., 2016, Circadian rhythm of a Silene species favours nocturnal pollination and constrains diurnal visitation, Annals of Botany, Online ahead of print. https://doi.org/10.1093/aob/mcw136 Shah K., Zhu X., Zhang T., Chen J., Chen J., and Qin Y., 2024, The poetry of nitrogen and carbon metabolic shifts: the role of C/N in pitaya phase change, Plant Science, 112240. https://doi.org/10.1016/j.plantsci.2024.112240 Shah K., Zhu X., Zhang T., Chen J., Chen J., and Qin Y., 2025, Transcriptome analysis reveals sugar and hormone signaling pathways mediating flower induction in pitaya (Hylocereus polyrhizus), International Journal of Molecular Sciences, 26(3): 1250. https://doi.org/10.3390/ijms26031250 Sheehan H., Moser M., Klahre U., Esfeld K., Dell’Olivo A., Mandel T., Metzger S., Vandenbussche M., Freitas L., and Kuhlemeier C., 2015, MYB-FL controls gain and loss of floral UV absorbance, a key trait affecting pollinator preference and reproductive isolation, Nature Genetics, 48: 159-166. https://doi.org/10.1038/ng.3462 Wang Z., Wang M., Ding Y., Li T., Jiang S., Kang S., Wei S., Xie J., Huang J., Hu W., Li H., and Tang H., 2023, The pitaya flower tissue’s gene differential expression analysis between self-incompatible and self-compatible varieties for the identification of genes involved in self-incompatibility regulation, International Journal of Molecular Sciences, 24(14): 11406. https://doi.org/10.3390/ijms241411406 Wu Z., Huang L., Huang F., Lu G., Wei S., Liu C., Deng H., and Liang G., 2022, Temporal transcriptome analysis provides molecular insights into flower development in red-flesh pitaya, Electronic Journal of Biotechnology, 56: 40-49. https://doi.org/10.1016/j.ejbt.2022.05.005 Xiong R., Liu C., Xu M., Wei S., Huang J., and Tang H., 2020, Transcriptomic analysis of flower induction for long-day pitaya by supplementary lighting in short-day winter season, BMC Genomics, 21: 108. https://doi.org/10.1186/s12864-020-6726-6 Ye X., Gao Y., Chen C., Xie F., Hua Q., Zhang Z., Zhang R., Zhao J., Hu G., and Qin Y., 2021, Genome-wide identification of aquaporin gene family in pitaya reveals an HuNIP6;1 involved in flowering process, International Journal of Molecular Sciences, 22(14): 7689. https://doi.org/10.3390/ijms22147689
RkJQdWJsaXNoZXIy MjQ4ODYzNA==