International Journal of Horticulture, 2025, Vol.15, No.3, 113-122 http://hortherbpublisher.com/index.php/ijh 121 Gervais T., Creelman A., Li X., Bizimungu B., De Koeyer D., and Dahal K., 2021, Potato response to drought stress: physiological and growth basis, Frontiers in Plant Science, 12: 698060. https://doi.org/10.3389/fpls.2021.698060 Hajibarat Z., Saidi A., Zeinalabedini M., Shariati V., Gorji A., and Ghaffari M., 2024, A holistic view of potato genetics: meta-analysis of QTLs controlling agronomic and morphological traits, Crop and Pasture Science. https://doi.org/10.1071/cp24189 Hameed A., Zaidi S., Shakir S., and Mansoor S., 2018, Applications of new breeding technologies for potato improvement, Frontiers in Plant Science, 9: 925. https://doi.org/10.3389/fpls.2018.00925 Handayani T., Gilani S., and Watanabe K., 2019, Climatic changes and potatoes: how can we cope with the abiotic stresses, Breeding Science, 69(4): 545-563. https://doi.org/10.1270/jsbbs.19070 Jama-Rodzeńska A., Janik G., Walczak A., Adamczewska-Sowi ńska K., and Sowiński J., 2021, Tuber yield and water efficiency of early potato varieties (Solanum tuberosumL.) cultivated under various irrigation levels, Scientific Reports, 11: 19048. https://doi.org/10.1038/s41598-021-97899-9 Koch L., Lehretz G., Sonnewald U., and Sonnewald S., 2024, Yield reduction caused by elevated temperatures and high nitrogen fertilization is mitigated by SP6Aoverexpression in potato (Solanum tuberosumL.), The Plant Journal: For Cell and Molecular Biology. https://doi.org/10.1111/tpj.16679 Lenartowicz T., Piepho H., and Przystalski M., 2019, Stability analysis of tuber yield and starch yield in mid-late and late maturing starch cultivars of potato (Solanum tuberosum), Potato Research, 63: 179-197. https://doi.org/10.1007/s11540-019-09434-z Li J., Zhang H., Zhu Q., Xia Y.B., Duan Z.L., Wen J.C., and Chen L.J., 2024, Tailor-made rice: using haplotype analysis to design high-yielding varieties, Molecular Plant Breeding, 15(5): 295-307. https://doi.org/10.5376/mpb.2024.15.0028 Martínez-Prada M., Curtin S., and Gutierrez-Gonzalez J., 2021, Potato improvement through genetic engineering, GM Crops and Food, 12: 479-496. https://doi.org/10.1080/21645698.2021.1993688 Merga B., and Dechassa N., 2019, Growth and productivity of different potato cultivars, Journal of Agricultural Science, 11(3): 528-536. https://doi.org/10.5539/jas.v11n3p528 Myronova H., 2023, Yield and quality of potato varieties depends on growing technological methods, Agriculture and Forestry, 1(17): Article 17. https://doi.org/10.37128/2707-5826-2023-1-17 Nahirñak V., Almasia N., González M., Massa G., Oneto C., Feingold S., Hopp H., and Rovere C., 2022, State of the art of genetic engineering in potato: from the first report to its future potential, Frontiers in Plant Science, 12: 768233. https://doi.org/10.3389/fpls.2021.768233 Ojeda J., Rezaei E.E., Kamali B., McPhee J., Meinke H., Siebert S., Webb M., Ara I., Mulcahy F., and Ewert F., 2021, Impact of crop management and environment on the spatio-temporal variance of potato yield at regional scale, Field Crops Research, 271: 108213. https://doi.org/10.1016/j.fcr.2021.108213 Paul S., Das M., Baishya P., Ramteke A., Farooq M., Baroowa B., Sunkar R., and Gogoi N., 2017, Effect of high temperature on yield associated parameters and vascular bundle development in five potato cultivars, Scientia Horticulturae, 225: 134-140. https://doi.org/10.1016/j.scienta.2017.06.061 Paul S., Farooq M., Bhattacharya S., and Gogoi N., 2017, Management strategies for sustainable yield of potato crop under high temperature, Archives of Agronomy and Soil Science, 63(2): 276-287. https://doi.org/10.1080/03650340.2016.1204542 Sanwal S., Kumar P., Kesh H., Gupta V., Kumar A., Kumar A., Meena B., Colla G., Cardarelli M., and Kumar P., 2022, Salinity stress tolerance in potato cultivars: evidence from physiological and biochemical traits, Plants, 11(14): 1842. https://doi.org/10.3390/plants11141842 Singh P., Sharma S., Kaur N., and Gill R., 2019, Potato cultivars differ in response to date of planting in intercrop with poplar (Populus deltoides Bartr. ex Marsh.) in irrigated agro-ecosystem of north-west India, Agroforestry Systems, 94: 1343-1353. https://doi.org/10.1007/s10457-019-00356-w Sonets T., and Furdyha M., 2022, Characteristics of potato varieties according to adaptability parameters researched in the forest zone of Ukraine, AgroLife Scientific Journal, 11(2): Article 223. https://doi.org/10.17930/agl2022223 Sonets T., Kienko Z., Mykhailyk S., Syplyva N., Gaidai A., and Borodai V., 2023, Study of the adaptability and resistance of potato genotypes to Fusarium solani (Mart.) Sacc, Věda a Perspektivy, 12(31): 344-353. https://doi.org/10.52058/2695-1592-2023-12(31)-344-353 Tito R., Vasconcelos H. L., and Feeley K.J., 2018, Global climate change increases risk of crop yield losses and food insecurity in the tropical Andes, Global Change Biology, 24: e592-e602. https://doi.org/10.1111/gcb.13959 Tiwari J.K., Challam C., Chakrabarti S.K., and Feingold S., 2020, Climate-smart potato: an integrated breeding genomics and phenomics approach, In The Potato Genome (pp. 1-46). Springer. https://doi.org/10.1007/978-3-319-97415-6_1
RkJQdWJsaXNoZXIy MjQ4ODYzNA==