IJH_2025v15n2

International Journal of Horticulture, 2025, Vol.15, No.2, 80-90 http://hortherbpublisher.com/index.php/ijh 88 Bonfante A., Alfieri S., Albrizio R., Basile A., Mascellis R., Gambuti A., Giorio P., Langella G., Manna P., Monaco E., Moio L., and Terribile F., 2017, Evaluation of the effects of future climate change on grape quality through a physically based model application: a case study for the Aglianico grapevine in Campania region, Italy, Agricultural Systems, 152: 100-109. https://doi.org/10.1016/J.AGSY.2016.12.009 Brunetto G., Melo G., Toselli M., Quartieri M., and Tagliavini M., 2015, The role of mineral nutrition on yields and fruit quality in grapevine, pear and apple, Revista Brasileira De Fruticultura, 37: 1089-1104. https://doi.org/10.1590/0100-2945-103/15 Buesa I., Ballester C., Mirás-Avalos J., and Intrigliolo D., 2020, Effects of leaning grapevine canopy to the West on water use efficiency and yield under Mediterranean conditions, Agricultural and Forest Meteorology, 295: 108166. https://doi.org/10.1016/j.agrformet.2020.108166 Butiuc-Keul A., and Coste A., 2023, Biotechnologies and strategies for grapevine improvement, Horticulturae, 9(1): 62. https://doi.org/10.3390/horticulturae9010062 Chaves M., Zarrouk O., Francisco R., Costa J., Santos T., Regalado A., Rodrigues M., and Lopes C., 2010, Grapevine under deficit irrigation: hints from physiological and molecular data, Annals of Botany, 105(5): 661-676. https://doi.org/10.1093/aob/mcq030 Collins C., Wang X., Lesefko S., Bei R., and Fuentes S., 2020, Effects of canopy management practices on grapevine bud fruitfulness, OENO One, 54: 313-325. https://doi.org/10.20870/oeno-one.2020.54.2.3016 Compant S., Brader G., Muzammil S., Sessitsch A., Lebrihi A., and Mathieu F., 2013, Use of beneficial bacteria and their secondary metabolites to control grapevine pathogen diseases, BioControl, 58: 435-455. https://doi.org/10.1007/s10526-012-9479-6 DeVetter L., Dilley C., and Nonnecke G., 2015, Mulches reduce weeds, maintain yield, and promote soil quality in a continental-climate vineyard, American Journal of Enology and Viticulture, 66: 54-64. https://doi.org/10.5344/ajev.2014.14064 Döring J., Frisch M., Tittmann S., Stoll M., and Kauer R., 2015, Growth, yield and fruit quality of grapevines under organic and biodynamic management, PLoS One, 10(10): e0138445. https://doi.org/10.1371/journal.pone.0138445 Du F., Deng W., Yang M., Wang H., Mao R., Shao J., Fan J., Chen Y., Fu Y., Li C., He X., Zhu Y., and Zhu S., 2015, Protecting grapevines from rainfall in rainy conditions reduces disease severity and enhances profitability, Crop Protection, 67: 261-268. https://doi.org/10.1016/J.CROPRO.2014.10.024 El-Salhy A., Al-Wasfy M., Salem E., and Abdalla O., 2023, Minimizing mineral-N fertilization Superior seedless grapevines by using humic and fulvic acids, Assiut Journal of Agricultural Sciences, 54: 227-238. https://doi.org/10.21608/ajas.2023.179162.1207 Fernandez-Mena H., Guilpart N., Lagacherie P., Roux R., Graveline N., Touzard J., Hannin H., and Gary C., 2023a, Grapevine yield big-data for soil and climate zoning, a case study in Languedoc-Roussillon, France, BIO Web of Conferences, 68: 01043. https://doi.org/10.1051/bioconf/20236801043 Fernandez-Mena H., Guilpart N., Lagacherie P., Roux R., Plaige M., Dumont M., Gautier M., Graveline N., Touzard J., Hannin H., and Gary C., 2023b, Grapevine yield gap: identification of environmental limitations by soil and climate zoning in the region of Languedoc-Roussillon (South of France), OENO One, 57(2): 361-379. https://doi.org/10.20870/oeno-one.2023.57.2.7246 Fidelibus M., 2021, Grapevine variety and number of canes affect dry-on-vine (DOV) raisin production on an overhead arbor trellis, Horticulturae, 7(10): 356. https://doi.org/10.3390/horticulturae7100356 Flexas J., Galmés J., Gallé A., Gulías J., Pou A., Ribas-Carbó M., Tomás M., and Medrano H., 2010, Improving water use efficiency in grapevines: potential physiological targets for biotechnological improvement, Australian Journal of Grape and Wine Research, 16: 106-121. https://doi.org/10.1111/J.1755-0238.2009.00057.X González-Fernández E., Piña-Rey A., Fernández-González M., Aira M., and Rodríguez-Rajo F., 2020, Prediction of grapevine yield based on reproductive variables and the influence of meteorological conditions, Agronomy, 10(5): 714. https://doi.org/10.3390/agronomy10050714 Guilpart N., Metay A., and Gary C., 2014, Grapevine bud fertility and number of berries per bunch are determined by water and nitrogen stress around flowering in the previous year, European Journal of Agronomy, 54: 9-20. https://doi.org/10.1016/J.EJA.2013.11.002 Guilpart N., Roux S., Gary C., and Metay A., 2017, The trade-off between grape yield and grapevine susceptibility to powdery mildew and grey mould depends on inter-annual variations in water stress, Agricultural and Forest Meteorology, 234: 203-211. https://doi.org/10.1016/J.AGRFORMET.2016.12.023 Gupta N., Brar K., Gill M., and Arora N., 2015, Studies on variability, correlation and path analysis of traits contributing to fruit yield in grapes, Indian Journal of Plant Genetic Resources, 28: 317-320. https://doi.org/10.5958/0976-1926.2015.00042.x

RkJQdWJsaXNoZXIy MjQ4ODYzNA==