International Journal of Horticulture, 2024, Vol.14, No.6, 381-393 http://hortherbpublisher.com/index.php/ijh 392 Killeen D.P., Watkins O.C., Sansom C.E., Andersen D.H., Gordon K.C., and Perry N.B., 2017, Fast sampling, analyses and chemometrics for plant breeding: bitter acids, xanthohumol and terpenes in lupulin glands of hops (Humulus lupulus), Phytochemical Analysis, 28(1): 50-57. https://doi.org/10.1002/pca.2642 Kopp P.A., 2014, The global hop: An agricultural overview of the brewer’s gold, In The geography of beer: Regions, environment, and societies, pp. 77-88. https://doi.org/10.1007/978-94-007-7787-3_8 Krogerus K., Fletcher E., Rettberg N., Gibson B., and Preiss R., 2021, Efficient breeding of industrial brewing yeast strains using CRISPR/Cas9-aided mating-type switching, Applied Microbiology and Biotechnology, 105: 8359-8376. https://doi.org/10.1007/s00253-021-11626-y Kubeš J., 2022, Geography of world hop production 1990-2019, Journal of the American Society of Brewing Chemists, 80(1): 84-91. https://doi.org/10.1080/03610470.2021.1880754 Liu M., Yin H., Liu G., Dong J., Qian Z., and Miao J., 2014, Xanthohumol, a prenylated chalcone from beer hops, acts as an α-glucosidase inhibitor in vitro, Journal of agricultural and food chemistry, 62(24): 5548-5554. https://doi.org/10.1021/jf500426z Liu P., Liang M., Liu Z., Long H., Cheng H., Su J., Tan Z., He X., Sun M., Li X., and He S., 2023, Facile green synthesis of wasted hop-based zinc oxide nanozymes as peroxidase-like catalysts for colorimetric analysis, Nanoscale, 16(2): 913-922. https://doi.org/10.1039/d3nr04336c Lukešová H., Andersen H. L., Kolínová M., and Holst B., 2019, Is it hop? Identifying hop fibres in a European historical context, Archaeometry, 61(2): 494-505. https://doi.org/10.1111/ARCM.12437 Machado Jr J.C., Faria M.A., and Ferreira I.M., 2019, Hops: New perspectives for an old beer ingredient, In Natural Beverages, pp. 267-301. https://doi.org/10.1016/B978-0-12-816689-5.00010-9 Marceddu R., Carrubba A., and Sarno M., 2020, Cultivation trials of hop (Humulus lupulus L.) in semi-arid environments, Heliyon, 6(10). https://doi.org/10.1016/j.heliyon.2020.e05114 McAdam E.L., Freeman J.S., Whittock S.P., Buck E.J., Jakše J., Čerenak A., Javornik B., Kilian A., Wang C., Andersen D., Vaillancourt R., Carling J., Beatson R., Graham L., Graham D., Darby P., and Koutoulis A., 2013, Quantitative trait loci in hop (Humulus lupulus L.) reveal complex genetic architecture underlying variation in sex, yield and cone chemistry, BMC genomics, 14: 1-27. https://doi.org/10.1186/1471-2164-14-360 McCabe A.K., Keyes J.K., Hemetsberger H., Kurr C.V., Albright B., Ward M.G., McKinley M., Breezley S., and Cole C., 2023, Aroma profile development in beer fermented with Azacca, Idaho-7, and Sultana Hops, Molecules, 28(15): 5802. https://doi.org/10.3390/molecules28155802 Mishra A.K., Kocábek T., Nath V., Awasthi P., Shrestha A., Killi U., Jakše J., Patzak J., Krofta K., and Matoušek J., 2019, Dissection of dynamic transcriptome landscape of leaf, bract, and lupulin gland in hop (Humulus lupulus L.), International Journal of Molecular Sciences, 21(1): 233. https://doi.org/10.3390/ijms21010233 Moir M., 2000, Hops—a millennium review, Journal of the American Society of Brewing Chemists, 58(4): 131-146. https://doi.org/10.1094/ASBCJ-58-0131 Mongelli A., Rodolfi M., Ganino T., Marieschi M., Caligiani A., Dall’Asta C., and Bruni R., 2016, Are Humulus lupulus L. ecotypes and cultivars suitable for the cultivation of aromatic hop in Italy? A phytochemical approach, Industrial Crops and Products, 83: 693-700. https://doi.org/10.1016/J.INDCROP.2015.12.046 Mozzon M., Foligni R., and Mannozzi C., 2020, Brewing quality of hop varieties cultivated in central Italy based on multivolatile fingerprinting and bitter acid content, Foods, 9(5): 541. https://doi.org/10.3390/foods9050541 Natsume S., Takagi H., Shiraishi A., Murata J., Toyonaga H., Patzak J., Takagi M., Yaegashi H., Uemura A., Mitsuoka C., Yoshida K., Krofta K., Satake H., Terauchi R., and Ono E., 2015, The draft genome of hop (Humulus lupulus), an essence for brewing, Plant and Cell Physiology, 56(3): 428-441. https://doi.org/10.1093/pcp/pcu169 Neve R.A., 1983, Hop production 1958-1983, Journal of the Institute of Brewing, 89(3): 164-169. https://doi.org/10.1002/J.2050-0416.1983.TB04162.X Padgitt-Cobb L.K., Kingan S.B., Wells J., Elser J., Kronmiller B., Moore D., Concepcion G., Peluso P., Rank D., Jaiswal P., Henning J., and Hendrix D., 2021, A draft phased assembly of the diploid Cascade hop (Humulus lupulus) genome, The Plant Genome, 14(1): e20072. https://doi.org/10.1002/tpg2.20072 Patzak J., and Henychová A., 2018, Evaluation of genetic variability within actual hop (Humulus lupulus L.) cultivars by an enlarged set of molecular markers, Czech Journal of Genetics and Plant Breeding, 54(2). https://doi.org/10.17221/175/2016-CJGPB Patzak J., Krofta K., Henychová A., and Nesvadba V., 2015, Number and size of lupulin glands, glandular trichomes of hop (Humulus lupulus L.), play a key role in contents of bitter acids and polyphenols in hop cone, International Journal of Food Science and Technology, 50(8): 1864-1872. https://doi.org/10.1111/IJFS.12825
RkJQdWJsaXNoZXIy MjQ4ODYzNA==