International Journal of Horticulture, 2024, Vol.14, No.6, 355-367 http://hortherbpublisher.com/index.php/ijh 366 Li X., Chen C., Yang X., Xiong J., and Ma N., 2022, The optimization of rapeseed yield and growth duration through adaptive crop management in climate change: evidence from China, Italian Journal of Agronomy, 17(4). https://doi.org/10.4081/ija.2022.2104 Li X., Zuo Q., Chang H., Bai G., Kuai J., and Zhou G., 2018, Higher density planting benefits mechanical harvesting of rapeseed in the Yangtze River Basin of China, Field Crops Research, 218: 97-105. https://doi.org/10.1016/J.FCR.2018.01.013 Liang J., Li H., Li N., Yang Q., and Li L., 2023, Analysis and prediction of the impact of socio-economic and meteorological factors on rapeseed yield based on machine learning, Agronomy, 13(7): 1867. https://doi.org/10.3390/agronomy13071867 Liu M., Linna C., Ma S., Ma Q., Song W., Shen M., Song L., Cui K., Zhou Y., and Wang L., 2022, Biochar combined with organic and inorganic fertilizers promoted the rapeseed nutrient uptake and improved the purple soil quality, Frontiers in Nutrition, 9: 997151. https://doi.org/10.3389/fnut.2022.997151 Luo T., Lin R., Cheng T., and Hu L., 2022, Low temperature rather than nitrogen application mainly modulates the floral initiation of different ecotypes of rapeseed (Brassica napus L.), Agronomy, 12(7): 1624. https://doi.org/10.3390/agronomy12071624 Luo T., Xian M., Zhang C., Zhang C., Hu L., and Xu Z., 2019, Associating transcriptional regulation for rapid germination of rapeseed (Brassica napus L.) under low temperature stress through weighted gene co-expression network analysis, Scientific Reports, 9(1): 55. https://doi.org/10.1038/s41598-018-37099-0 Ma N., Wan L., Zhao W., Liu H., Li J., and Zhang C., 2020, Exogenous strigolactones promote lateral root growth by reducing the endogenous auxin level in rapeseed, Journal of Integrative Agriculture, 19(2): 465-482. https://doi.org/10.1016/s2095-3119(19)62810-8 Marjanović-Jeromela A., Terzić S., Jankulovska M., Zorić M., Kondić-Špika A., Jocković M., Hristov N., Crnobarac J., and Nagl N., 2019, Dissection of year related climatic variables and their effect on winter rapeseed (Brassica napus L.) development and yield, Agronomy, 9(9): 517. https://doi.org/10.3390/agronomy9090517 Mustafa H., Mahmood T., Bashir H., Hasan E., Din A., Habib S., Altaf M., Qamar R., Ghias M., Bashir M., Anwar M., Zafar S., Ahmad I., Yaqoob M., Rashid F., Mand G., Nawaz A., and Salim J., 2022, Genetic and physiological aspects of silique shattering in rapeseed and mustard, SABRAO Journal of Breeding and Genetics, pp.210-220. https://doi.org/10.54910/sabrao2022.54.2.1 Mácová K., Prabhullachandran U., Štefková M., Spyroglou I., Pěnčík A., Endlová L., Novák O., and Robert H., 2022, Long-term high-temperature stress impacts on embryo and seed development in Brassica napus, Frontiers in Plant Science, 13: 844292. https://doi.org/10.3389/fpls.2022.844292 Nabloussi A., Bahri H., Lakbir M., Moukane H., Kajji A., and El Fechtali M., 2019, Assessment of a set of rapeseed (Brassica napus L.) varieties under waterlogging stress at different plant growth stages, OCL, 26: 36. https://doi.org/10.1051/OCL/2019033 Raboanatahiry N., Chao H., He J., Li H., Yin Y., and Li M., 2022, Construction of a quantitative genomic map, identification and expression analysis of candidate genes for agronomic and disease-related traits in Brassica napus, Frontiers in Plant Science, 13: 862363. https://doi.org/10.3389/fpls.2022.862363 Raboanatahiry N., Li H., Yu L., and Li M., 2021, Rapeseed (Brassica napus): Processing, utilization, and genetic improvement, Agronomy, 11(9): 1776. https://doi.org/10.3390/agronomy11091776 Raza A., 2021, Eco-physiological and biochemical responses of rapeseed (Brassica napus L.) to abiotic stresses: consequences and mitigation strategies, Journal of Plant Growth Regulation, 40(4): 1368-1388. https://doi.org/10.1007/s00344-020-10231-z Safdar M., Qamar R., Javed A., Nadeem M., Javeed H., Farooq S., Głowacka A., Michałek S., Alwahibi M., Elshikh M., and Ahmed M., 2023, Combined application of boron and zinc improves seed and oil yields and oil quality of oilseed rape (Brassica napus L.), Agronomy, 13(8): 2020. https://doi.org/10.3390/agronomy13082020 Shi L., Song J., Guo C., Wang B., Guan Z., Yang P., Chen X., Zhang Q., King G., Wang J., and Liu K., 2019, A CACTA-like transposable element in the upstream region of BnaA9. CYP 78A9 acts as an enhancer to increase silique length and seed weight in rapeseed, The Plant Journal, 98(3): 524-539. https://doi.org/10.1111/tpj.14236 Tarkowská D., Filek M., Krekule J., Biesaga-Kościelniak J., Marciñska I., Popielarska-Konieczna M., and Strnad M., 2019, The dynamics of cytokinin changes after grafting of vegetative apices on flowering rapeseed plants, Plants, 8(4): 78. Teymoori M., Ardakani M.R., Rad A.H.S., Alavifazel M., and Manavi P.N., 2020, Seed yield and physiological responses to deal with drought stress and late sowing date for promising lines of rapeseed (Brassica napus L.), International Agrophysics, 34(3): 321-331. https://doi.org/10.31545/intagr/124388 Tian C., Zhou X., Liu Q., Peng J., Zhang Z., Song H., Ding Z., Zhran M., Eissa M., Kheir A., Fahmy A., and Abou-Elwafa S., 2020, Increasing yield, quality and profitability of winter oilseed rape (Brassica napus) under combinations of nutrient levels in fertiliser and planting density, Crop and Pasture Science, 71(12): 1010-1019. https://doi.org/10.1071/CP20328
RkJQdWJsaXNoZXIy MjQ4ODYzNA==