International Journal of Horticulture, 2024, Vol.14, No.5, 319-332 http://hortherbpublisher.com/index.php/ijh 330 Conflict of Interest Disclosure The author affirms that this research was conducted without any commercial or financial relationships that could be construed as a potential conflict of interest. References Choi D., Choi J.H., Park K.J., Kim C., Lim J.H., and Kim D.H., 2023, Transcriptomic analysis of effects of 1-methylcyclopropene (1-MCP) and ethylene treatment on kiwifruit (Actinidia chinensis) ripening, Frontiers in Plant Science, 13: 1084997. https://doi.org/10.3389/fpls.2022.1084997 Concordet J.P., and Haeussler M., 2018, CRISPOR: intuitive guide selection for CRISPR/Cas9 genome editing experiments and screens, Nucleic acids research, 46(W1): W242-W245. https://doi.org/10.1093/nar/gky354 De Mori G., Zaina G., Franco-Orozco B., Testolin R., De Paoli E., and Cipriani G., 2020, Targeted mutagenesis of the female-suppressor SyGI gene in tetraploid kiwifruit by CRISPR/CAS9, Plants, 10(1): 62. https://doi.org/10.3390/plants10010062 Fizikova A., Tikhonova N., Ukhatova Y., Ivanov R., and Khlestkina E., 2021, Applications of CRISPR/Cas9 system in vegetatively propagated fruit and berry crops, Agronomy, 11(9): 1849. https://doi.org/10.3390/agronomy11091849 Herath D., Voogd C., Mayo-Smith M., Yang B., Allan A.C., Putterill J., and Varkonyi-Gasic E., 2022, CRISPR-Cas9-mediated mutagenesis of kiwifruit BFT genes results in an evergrowing but not early flowering phenotype, Plant Biotechnology Journal, 20(11): 2064-2076. https://doi.org/10.1111/pbi.13888 Huang S., Ding J., Deng D., Tang W., Sun H., Liu D., Zhang L., Niu X., Zhang X., Meng M., Yu J., Liu J., Han Y., Shi W., Zhang D., Cao S., Wei Z., Cui Y., Xia Y., Zeng H., Bao K., Lin L., Min Y., Zhang H., Miao M., Tang X., Zhu Y., Sui Y., Li G., Sun H., Yue J., Sun J., Liu F., Zhou L., Lei L., Zheng X., Liu M., Huang L., Song J., Xu C., Li J., Ye K., Zhong S., Lu B., He G., Xiao F., Wang H., Zheng H., Fei Z., and Liu Y., 2013, Draft genome of the kiwifruit Actinidia chinensis, Nature Communications, 4(1): 2640. https://doi.org/10.1038/ncomms3640 Huang W., Chen M., Zhao T., Han F., Zhang Q., Liu X., Jiang C., and Zhong C., 2020, Genome-wide identification and expression analysis of polygalacturonase gene family in kiwifruit (Actinidia chinensis) during fruit softening, Plants, 9(3): 327. https://doi.org/10.3390/plants9030327 Keul A.B., Farkas A., Carpa R., Dobrota C., and Iordache D., 2022, Development of smart fruit crops by genome editing, Turkish Journal of Agriculture and Forestry, 46(2): 129-140. https://doi.org/10.55730/1300-011x.2965 Manghwar H., Lindsey K., Zhang X., and Jin S., 2019, CRISPR/Cas system: recent advances and future prospects for genome editing, Trends in Plant Science, 24(12): 1102-1125. https://doi.org/10.1016/j.tplants.2019.09.006 McAtee P., Richardson A., Nieuwenhuizen N., Gunaseelan K., Hoong L., Chen X., Atkinson R., Burdon J., David K., and Schaffer R., 2015, The hybrid non-ethylene and ethylene ripening response in kiwifruit (Actinidia chinensis) is associated with differential regulation of MADS-box transcription factors, BMC Plant Biology, 15: 1-16. https://doi.org/10.1186/s12870-015-0697-9 Negro S., Millet E., Madur D., Bauland C., Combes V., Welcker C., Tardieu F., Charcosset A., and Nicolas S., 2019, Genotyping-by-sequencing and SNP-arrays are complementary for detecting quantitative trait loci by tagging different haplotypes in association studies, BMC Plant Biology, 19: 1-22. https://doi.org/10.1186/s12870-019-1926-4 Pan M., and Barrangou R., 2020, Combining omics technologies with CRISPR-based genome editing to study food microbes, Current Opinion in Biotechnology, 61: 198-208. https://doi.org/10.1016/j.copbio.2019.12.027 Pilkington S., Crowhurst R., Hilario E., Nardozza S., Fraser L., Peng Y., Gunaseelan K., Simpson R., Tahir J., Deroles S., Templeton K., Luo Z., Davy M., Cheng C., McNeilage M., Scaglione D., Liu Y., Zhang Q., Datson P., Silva N., Gardiner S., Bassett H., Chagné D., McCallum J., Dzierzon H., Deng C., Wang Y., Barron L., Manako K., Bowen J., Foster T., Erridge Z., Tiffin H., Waite C., Davies K., Grierson E., Laing W., Kirk R., Chen X., Wood M., Montefiori M., Brummell D., Schwinn K., Catanach A., Fullerton C., Li D., Meiyalaghan S., Nieuwenhuizen N., Read N., Prakash R., Hunter D., Zhang H., McKenzie M., Knäbel M., Harris A., Allan A., Gleave A., Chen A., Janssen B., Plunkett B., Ampomah-Dwamena C., Voogd C., Leif D., Lafferty D., Souleyre E., Varkonyi-Gasic E., Gambi F., Hanley J., Yao J., Cheung J., David K., Warren B., Marsh K., Snowden K., Lin-Wang K., Brian L., Martínez-Sánchez M., Wang M., Ileperuma N., Macnee N., Campin R., McAtee P., Drummond R., Espley R., Ireland H., Wu R., Atkinson R., Karunairetnam S., Bulley S., Chunkath S., Hanley Z., Storey R., Thrimawithana A., Thomson S., David C., Testolin R., Huang H., Hellens R., and Schaffer R., 2018, A manually annotated Actinidia chinensis var. chinensis (kiwifruit) genome highlights the challenges associated with draft genomes and gene prediction in plants, BMC Genomics, 19: 1-19. https://doi.org/10.1186/s12864-018-4656-3
RkJQdWJsaXNoZXIy MjQ4ODYzNA==