International Journal of Horticulture, 2024, Vol.14, No.5, 283-296 http://hortherbpublisher.com/index.php/ijh 295 Kahveci E., Devran Z., Özkaynak E., Hong Y., Studholme D.J., and Tör M., 2021, Genomic-assisted marker development suitable for Cscvy-1 selection in cucumber breeding, Frontiers in Plant Science, 12: 691576. https://doi.org/10.3389/fpls.2021.691576 Kumar R., Jorben J., Yadav R.R., and Senapati M., 2020, Genomics and its application in crop improvement, Journal of Pharmacognosy and Phytochemistry, 9(1): 547-552. https://doi.org/10.22271/phyto.2020.v9.i1i.10488 Lee E.S., Yang H.B., Kim J., Lee H.E., Lee Y.R., and Kim D.S., 2022, Development of SNP marker sets for marker-assisted background selection in cultivated cucumber varieties, Agronomy, 12(2): 487. https://doi.org/10.3390/agronomy12020487 Lee H., Kim J., Kang B., and Song K., 2020, Assessment of the genetic diversity of the breeding lines and a genome-wide association study of three horticultural traits using worldwide cucumber (Cucumis spp.) germplasm collection, Agronomy. https://doi.org/10.3390/agronomy10111736 Li C.X., Dong S.Y., Liu X.P., Bo K.L., Miao H., Beckles D.M., Zhang S.P., and Gu X.F., 2020a, Genome-wide characterization of cucumber (Cucumis sativus L.) GRAS genes and their response to various abiotic stresses, Horticulturae, 6(4): 110. https://doi.org/10.3390/horticulturae6040110 Li J., Wang T., Han J., and Ren Z., 2020b, Genome-wide identification and characterization of cucumber bHLH family genes and the functional characterization of CsbHLH041 in NaCl and ABA tolerance in Arabidopsis and cucumber, BMC Plant Biology, 20: 1-20. https://doi.org/10.1186/s12870-020-02440-1 Li Q., Li H., Huang W., Xu Y., Zhou Q., Wang S., Ruan J., Huang S., and Zhang Z., 2019, A chromosome-scale genome assembly of cucumber (Cucumis sativus L.), GigaScience, 8(6): giz072. https://doi.org/10.1093/gigascience/giz072 Li X., Sun Y., Yang Y., Yang X., Xue W., Wu M., Chen P., Weng Y., and Chen S., 2021, Transcriptomic and histological analysis of the response of susceptible and resistant cucumber to Meloidogyne incognita infection revealing complex resistance via multiple signaling pathways, Frontiers in Plant Science, 12: 675429. https://doi.org/10.3389/fpls.2021.675429 Liu C., Liu X., Han Y., Wang X.A., Ding Y., Meng H., and Cheng Z., 2021, Genomic prediction and the practical breeding of 12 quantitative-inherited traits in cucumber (Cucumis sativus L.), Frontiers in Plant Science, 12: 729328. https://doi.org/10.3389/fpls.2021.729328 Liu D., Dong S., Miao H., Liu X., Li C., Han J., Zhang S., and Gu X., 2022, A large-scale genomic association analysis identifies the candidate genes regulating salt tolerance in cucumber (Cucumis sativus L.) seedlings, International Journal of Molecular Sciences, 23(15): 8260. https://doi.org/10.3390/ijms23158260 Liu H., Zhao J., Chen F., Wu Z., Tan J., Nguyen N., Cheng Z., and Weng Y., 2023, Improving Agrobacterium tumefaciens− mediated genetic transformation for gene function studies and mutagenesis in cucumber (Cucumis sativus L.), Genes, 14(3): 601. https://doi.org/10.3390/genes14030601 Miao L., Di Q., Sun T., Li Y., Duan Y., Wang J., Yan Y., He C., Wang C., and Yu X., 2019, Integrated metabolome and transcriptome analysis provide insights into the effects of grafting on fruit flavor of cucumber with different rootstocks, International Journal of Molecular Sciences, 20(14): 3592. https://doi.org/10.3390/ijms20143592 Qin X., Zhang Z., Lou Q., Xia L., Li J., Li M., Zhou J., Zhao X., Xu Y., Li Q., Yang S., Yu X., Cheng C., Huang S., and Chen J., 2021, Chromosome-scale genome assembly of Cucumis hystrix—a wild species interspecifically cross-compatible with cultivated cucumber, Horticulture Research, 8: 1-9. https://doi.org/10.1038/s41438-021-00475-5 Rajam M.V., 2020, RNA silencing technology: A boon for crop improvement, Journal of Biosciences, 45(1): 1-5. https://doi.org/10.1007/s12038-020-00082-x Rajput M., Choudhary K., Kumar M., Vivekanand V., Chawade A., Ortiz R., and Pareek N., 2021, RNA interference and CRISPR/Cas gene editing for crop improvement: Paradigm shift towards sustainable agriculture, Plants, 10(9): 1914. https://doi.org/10.3390/plants10091914 Schulze S., and Lammers M., 2020, The development of genome editing tools as powerful techniques with versatile applications in biotechnology and medicine: CRISPR/Cas9, ZnF and TALE nucleases, RNA interference, and Cre/loxP, ChemTexts, 7(1): 3. https://doi.org/10.1007/s40828-020-00126-7 Song H., Lin K., Hu J., and Pang E., 2018, An updated functional annotation of protein-coding genes in the cucumber genome, Frontiers in Plant Science, 9: 325. https://doi.org/10.3389/fpls.2018.00325 Tian J., Li Y., Hu Y., Zhong Q., Yin J., and Zhu Y., 2022, Mining the roles of cucumber DUF966 genes in fruit development and stress response, Plants, 11(19): 2497. https://doi.org/10.3390/plants11192497 Turek S., Pląder W., Hoshi Y., Skarzyńska A., and Pawełkowicz M., 2023, Insight into the organization of the B10v3 cucumber genome by integration of biological and bioinformatic data, International Journal of Molecular Sciences, 24(4): 4011. https://doi.org/10.3390/ijms24044011
RkJQdWJsaXNoZXIy MjQ4ODYzNA==