IJH_2024v14n3

International Journal of Horticulture, 2024, Vol.14, No.3, 142-155 http://hortherbpublisher.com/index.php/ijh 155 Montecillo J., Chu L., and Bae H., 2020, CRISPR-Cas9 system for plant genome editing: Current approaches and emerging developments, Agronomy, 10(7), 1033. https://doi.org/10.3390/agronomy10071033 Oke A., Oladigbolu A., Kunta M., Alabi O., and Sétamou M., 2020, First report of the occurrence of Asian citrus psyllid Diaphorina citri (Hemiptera: Liviidae), an invasive species in Nigeria, West Africa, Scientific reports, 10(1): 9418. https://doi.org/10.1038/s41598-020-66380-4 Patt J., Robbins P., Niedz R., McCollum G., and Alessandro R., 2018, Exogenous application of the plant signalers methyl jasmonate and salicylic acid induces changes in volatile emissions from Citrus foliage and influences the aggregation behavior of Asian citrus psyllid (Diaphorina citri), vector of Huanglongbing, PLoS ONE, 13. https://doi.org/10.1371/journal.pone.0193724 Pramanik D., Shelake R., Park J., Kim M., Hwang I., Park Y., and Kim J., 2021, CRISPR/Cas9-mediated generation of pathogen-resistant tomato against Tomato Yellow Leaf Curl Virus and Powdery Mildew, International Journal of Molecular Sciences, 22. https://doi.org/10.3390/ijms22041878 Qasim M., Xiao H., He K., Omar M., Hussain D., Noman A., Rizwan M., Khan K., Al-zoubi O., Alharbi S., Wang L., and Li F., 2021, Host-pathogen interaction between Asian Citrus psyllid and entomopathogenic fungus (Cordyceps fumosorosea) is regulated by modulations in gene expression, enzymatic activity and HLB-bacterial population of the host, Comparative biochemistry and physiology, Toxicology & Pharmacology: CBP, pp. 109112. https://doi.org/10.1016/j.cbpc.2021.109112 Shi Q., Febres V., Zhang S., Yu F., McCollum G., Hall D., Moore G., and Stover E., 2018, Identification of gene candidates associated with Huanglongbing tolerance, using 'Candidatus Liberibacter asiaticus' Flagellin 22 as a proxy to challenge citrus, Molecular plant-microbe interactions: MPMI, 31(2): 200-211. https://doi.org/10.1094/MPMI-04-17-0084-R Shi Q., Pitino M., Zhang S., Krystel J., Cano L., Shatters R., Hall D., and Stover E., 2019, Temporal and spatial detection of Candidatus Liberibacter asiaticus putative effector transcripts during interaction with Huanglongbing-susceptible, -tolerant, and -resistant Citrus hosts, BMC Plant Biology, 19. https://doi.org/10.1186/s12870-019-1703-4 Tian F., Li C., Wang Z., Liu J., and Zeng X., 2019, Identification of detoxification genes in imidacloprid-resistant Asian citrus psyllid (Hemiptera: Lividae) and their expression patterns under stress of eight insecticides, Pest management Science, 75(5): 1400-1410. https://doi.org/10.1002/ps.5260 Tian F., Mo X., Rizvi S., Li C., and Zeng X., 2018, Detection and biochemical characterization of insecticide resistance in field populations of Asian citrus psyllid in Guangdong of China, Scientific Reports, 8(1): 12587. https://doi.org/10.1038/s41598-018-30674-5 Wan D., Guo Y., Cheng Y., Hu Y., Xiao S., Wang Y., and Wen Y., 2020, CRISPR/Cas9-mediated mutagenesis of VvMLO3 results in enhanced resistance to powdery mildew in grapevine (Vitis vinifera), Horticulture Research, 7(1): 116. https://doi.org/10.1038/s41438-020-0339-8 Wang L., Chen S., Peng A., Xie Z., He Y., and Zou X., 2019, CRISPR/Cas9-mediated editing of CsWRKY22 reduces susceptibility to Xanthomonas citri subsp. citri in Wanjincheng orange (Citrus sinensis (L.) Osbeck), Plant Biotechnology Reports, 13: 501-510. https://doi.org/10.1007/s11816-019-00556-x Yu X., and Killiny N., 2018, RNA interference of two glutathione S-transferase genes, Diaphorina citri DcGSTe2 and DcGSTd1, increases the susceptibility of Asian citrus psyllid (Hemiptera: Liviidae) to the pesticides fenpropathrin and thiamethoxam, Pest management science, 74(3): 638-647. https://doi.org/10.1002/ps.4747 Zafar K., Khan M., Amin I., Mukhtar Z., Yasmin S., Arif M., Ejaz K., and Mansoor S., 2020, Precise CRISPR-Cas9 mediated genome editing in super basmati rice for resistance against bacterial blight by targeting the major susceptibility gene, Frontiers in Plant Science, 11: 532184. https://doi.org/10.3389/fpls.2020.00575 Zhang H., Chen J., Lin J., Lin J., and Wu Z., 2020, Odorant binding proteins and chemosensory proteins potentially involved in host plant recognition in the Asian citrus psyllid, Diaphorina citri, Pest Management Science, 76(8): 609-2618. https://doi.org/10.1002/ps.5799 Zhou J., Li D., Wang G., Wang F., Kunjal M., Joldersma D., and Liu Z., 2020, Application and future perspective of CRISPR/Cas9 genome editing in fruit crops, Journal of Integrative Plant Biology, 62(3): 269-286. https://doi.org/10.1111/jipb.12793 Zhu H., Li C., and Gao C., 2020. Applications of CRISPR-Cas in agriculture and plant biotechnology, Nature Reviews Molecular Cell Biology, 21: 661-677. https://doi.org/10.1038/s41580-020-00288-9 Disclaimer/Publisher’s Note The statements, opinions, and data contained in all publications are solely those of the individual authors and contributors and do not represent the views of the publishing house and/or its editors. The publisher and/or its editors disclaim all responsibility for any harm or damage to persons or property that may result from the application of ideas, methods, instructions, or products discussed in the content. Publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

RkJQdWJsaXNoZXIy MjQ4ODYzNA==