IJH_2024v14n3

International Journal of Horticulture, 2024, Vol.14, No.3, 142-155 http://hortherbpublisher.com/index.php/ijh 154 Chen X., Gill T., Ashfaq M., Pelz-Stelinski K., and Stelinski L., 2018, Resistance to commonly used insecticides in Asian citrus psyllid: Stability and relationship to gene expression, Journal of Applied Entomology, 142: 967-977. https://doi.org/10.1111/jen.12561 Chen X., Neupane S., Gill T., Gossett H., Pelz-Stelinski K., and Stelinski L., 2021, Comparative transcriptome analysis of thiamethoxam susceptible and resistant Asian citrus psyllid, Diaphorina citri (Hemiptera: Liviidae), using RNA-sequencing, Insect Science, 28. https://doi.org/10.1111/1744-7917.12901 Chu P., and Agapito-Tenfen S., 2022, Unintended genomic outcomes in current and next generation GM Techniques: A Systematic Review, Plants, 11. https://doi.org/10.3390/plants11212997 El-Mounadi K., Morales-Floriano M., and Garcia-Ruiz H., 2020, Principles, applications, and biosafety of plant genome editing using CRISPR-Cas9, Frontiers in Plant Science, 11. https://doi.org/10.3389/fpls.2020.00056 El-Shesheny I., Hajeri S., El-hawary I., Gowda S., and Killiny N., 2013, Silencing abnormal wing disc gene of the Asian citrus psyllid, Diaphorina citri disrupts adult wing development and increases nymph mortality, PloS one, 8(5): e65392. https://doi.org/10.1371/journal.pone.0065392 Gao S., Guo J., Xu Y., Tu Y., and Zhu H., 2021, Modeling and dynamics of physiological and behavioral resistance of Asian citrus psyllid, Mathematical biosciences, pp.108674. https://doi.org/10.1016/j.mbs.2021.108674 Gupta D., Bhattacharjee O., Mandal D., Sen M., Dey D., Dasgupta A., Kazi T., Gupta R., Sinharoy S., Acharya K., Chattopadhyay D., Ravichandiran V., Roy S., and Ghosh D., 2019, CRISPR-Cas9 system: A new-fangled dawn in gene editing, Life Sciences, pp. 116636. https://doi.org/10.1016/j.lfs.2019.116636 Hajiahmadi Z., Movahedi A., Wei H., Li D., Orooji Y., Ruan H., and Zhuge Q., 2019, Strategies to increase on-target and reduce off-target effects of the CRISPR/Cas9 system in plants, International Journal of Molecular Sciences, 20(15): 3719. https://doi.org/10.3390/ijms20153719 Hall D., Richardson M., Ammar E., and Halbert S., 2013, Asian citrus psyllid, Diaphorina citri, vector of citrus huanglongbing disease, Entomologia Experimentalis et Applicata, 146(2): 207-223. https://doi.org/10.1111/eea.12025 He R., Fisher T., Saha S., Peiz-Stelinski K., Willis M., Gang D., and Brown J., 2023, Differential gene expression of Asian citrus psyllids infected with ‘Ca. Liberibacter asiaticus’ reveals hyper-susceptibility to invasion by instar fourth-fifth and teneral adult stages, Frontiers in Plant Science, 14: 1229620. https://doi.org/10.3389/fpls.2023.1229620 Huang, X., Wang, Y., & Wang, N., 2022, Highly efficient generation of canker-resistant sweet orange enabled by an improved CRISPR/Cas9 System, Frontiers in Plant Science, 12. https://doi.org/10.3389/fpls.2021.769907 Hunter W., Clarke S., Mojica A., Paris T., Miles G., Metz J., Holland C., McCollum G., Qureshi J., Tomich J., Boyle M., Cano L., Altman S., and Pelz-Stelinski K., 2020, Advances in RNA suppression of the Asian citrus psyllid vector and bacteria (Huanglongbing pathosystem), pp. 258-283. https://doi.org/10.1079/9781786394088.0258 Hunter W., González M., and Tomich J., 2018, BAPC-assisted CRISPR/Cas9 system: targeted delivery into adult ovaries for heritable germline gene editing (Arthropoda: Hemiptera), bioRxiv. https://doi.org/10.1101/478743 Jia H., Omar A., Orbović V., and Wang N., 2021, Biallelic editing of the LOB1 promoter via CRISPR/Cas9 creates canker-resistant ‘Duncan’grapefruit, Phytopathology®, 112(2): 308-314. https://doi.org/10.1094/PHYTO-04-21-0144-R Jia H., Zou, X., Orbović, V., & Wang, N., 2019, Genome editing in citrus tree with CRISPR/Cas9, Methods in Molecular Biology, 1917: 235-241. https://doi.org/10.1007/978-1-4939-8991-1_17 Kimberland M., Hou W., Alfonso-Pecchio A., Wilson S., Rao Y., Zhang S., and Lu Q., 2018, Strategies for controlling CRISPR/Cas9 off-target effects and biological variations in mammalian genome editing experiments, Journal of Biotechnology, 284: 91-101. https://doi.org/10.1016/j.jbiotec.2018.08.007 Leong S.S., Leong S.C., and Beattie G.A., 2022, Integrated pest management strategies for Asian citrus psyllid Diaphorina citri Kuwayama (Hemiptera: Psyllidae) and huanglongbing in citrus for Sarawak, East Malaysia, Borneo, Insects, 13(10): 960. https://doi.org/10.3390/insects13100960 Li Y., Liang J., Deng B., Jiang Y., Zhu J., Chen L., Li M., and Li J., 2023, Applications and prospects of CRISPR/Cas9-mediated base editing in plant breeding, Current Issues in Molecular Biology, 45: 918-935. https://doi.org/10.3390/cimb45020059 Ma X., Zhang X., Liu H., and Li Z., 2020, Highly efficient DNA-free plant genome editing using virally delivered CRISPR-Cas9, Nature Plants, 6: 773-779. https://doi.org/10.1038/s41477-020-0704-5 Mao Y., Botella J., Liu Y., and Zhu J., 2019, Gene editing in plants: progress and challenges, National Science Review, 6: 421-437. https://doi.org/10.1093/nsr/nwz005

RkJQdWJsaXNoZXIy MjQ4ODYzNA==