IJH_2024v14n3

International Journal of Horticulture, 2024, Vol.14, No.3, 195-206 http://hortherbpublisher.com/index.php/ijh 205 Armanhi J., Souza R., Biazotti B., Yassitepe J., and Arruda P., 2021, Modulating drought stress response of maize by a synthetic bacterial community, Frontiers in Microbiology, 12: 747541. https://doi.org/10.3389/fmicb.2021.747541 PMid:34745050 PMCid:PMC8566980 Amitrano C., Chirico G., Pascale S., Rouphael Y., and Micco V., 2020, Crop management in controlled environment agriculture (CEA) systems using predictive mathematical models, Sensors, 20(11): 3110. https://doi.org/10.3390/s20113110 PMid:32486394 PMCid:PMC7308940 Barreto R., Cornejo J., Palomares R., Cornejo J., and Vargas M., 2023, controlled environment agriculture and bio-automation systems to improve plant growth methods in space, In 2023 IEEE Seventh Ecuador Technical Chapters Meeting (ECTM), IEEE, pp.1-8. https://doi.org/10.1109/ETCM58927.2023.10309029 PMid:37821803 Cetegen S., and Stuber M., 2021, Optimal design of controlled environment agricultural systems under market uncertainty, Computers & Chemical Engineering, 149: 107285. https://doi.org/10.1016/j.compchemeng.2021.107285 Chaux J., Sanchez-Londono D., and Barbieri G., 2021, A digital twin architecture to optimize productivity within controlled environment agriculture, Applied Sciences, 11(19): 8875. https://doi.org/10.3390/app11198875 Chiaranunt P., and White J. F., 2023, Plant beneficial bacteria and their potential applications in vertical farming systems, Plants, 12(2): 400. https://doi.org/10.3390/plants12020400 PMid:36679113 PMCid:PMC9861093 Coker J., Zhalnina K., Marotz C., Thiruppathy D., Tjuanta M., D’Elia G., Hailu R., Mahosky T., Rowan M., Northen T., and Zengler K., 2022, A reproducible and tunable synthetic soil microbial community provides new insights into microbial ecology, Msystems, 7(6): e00951-22. https://doi.org/10.1128/msystems.00951-22 PMid:36472419 PMCid:PMC9765266 Cowan N., Ferrier L., Spears B., Drewer J., Reay D., and Skiba U., 2022, CEA systems: the means to achieve future food security and environmental sustainability? Frontiers in Sustainable Food Systems, 6: 891256. https://doi.org/10.3389/fsufs.2022.891256 Dsouza A., Price G., Dixon M., and Graham T., 2021, A conceptual framework for incorporation of composting in closed-loop urban controlled environment agriculture, Sustainability, 13(5): 2471. https://doi.org/10.3390/su13052471 Engler N., and Krarti M., 2021, Review of energy efficiency in controlled environment agriculture, Renewable and Sustainable Energy Reviews, 141: 110786. https://doi.org/10.1016/j.rser.2021.110786 Folta K., 2018, Breeding new varieties for controlled environments, Plant Biology, 21(Suppl 1): 6-12. https://doi.org/10.1111/plb.12914 PMid:30230154 Fonseca-García C., Wilson A., Elmore J., Pettinga D., Mcclure R., Atim J., Pedraza J., Hutmacher R., Egbert R., and Coleman-Derr D., 2023, Defined synthetic microbial communities colonize and benefit field-grown sorghum, bioRxiv, 2023: 542977. https://doi.org/10.1101/2023.05.30.542977 PMid:37292352 PMCid:PMC10245066 Gan C., Soukoutou R., and Conroy D., 2022, Sustainability framing of controlled environment agriculture and consumer perceptions: a review, Sustainability, 15(1): 304. https://doi.org/10.3390/su15010304 Imler C., 2020, Quantifying temperature effects in controlled environment agriculture leafy greens and culinary herbs, Iowa State University, pp.1-80. https://doi.org/10.31274/etd-20210114-67 Lu Y., Gong M., Li J., and Ma J., 2023, Optimizing controlled environmental agriculture for strawberry cultivation using RL-informer model, Agronomy, 13(8): 2057. https://doi.org/10.3390/agronomy13082057 Luo J., Li B., and Leung C., 2022, A survey of computer vision technologies in urban and controlled-environment agriculture, ACM Computing Surveys, 56(5): 1-39. https://doi.org/10.1145/3626186 Marie T., Leonardos E., Lanoue J., Hao X., Micallef B., and Grodzinski B., 2022, A perspective emphasizing circadian rhythm entrainment to ensure sustainable crop production in controlled environment agriculture: dynamic use of LED cues, Frontiers in Sustainable Food Systems, 6: 856162. https://doi.org/10.3389/fsufs.2022.856162 Marín O., González B., and Poupin M., 2021, From microbial dynamics to functionality in the rhizosphere: a systematic review of the opportunities with synthetic microbial communities, Frontiers in Plant Science, 12: 650609. PMid:34149752 PMCid:PMC8210828

RkJQdWJsaXNoZXIy MjQ4ODYzNA==