IJH_2024v14n2

International Journal of Horticulture, 2024, Vol.14, No.2, 66-77 http://hortherbpublisher.com/index.php/ijh 76 Aranzana M.J., Kim S., Zhao K., et al., 2005, Genome-wide association mapping in Arabidopsis identifies previously known flowering time and pathogen resistance genes, PLoS genetics, 1(5): e60. https://doi.org/10.1371/journal.pgen.0010060 Basile B., Andreotti C., Rogers H., and Rouphael Y., 2023, The role of horticultural research in mitigating global food and economic crises, Italus Hortus, 30(1): 1-2. https://doi.org/10.26353/j.itahort/2023.1.0102 Bate N., Dardick C., Maagd R., and Williams R., 2021, Opportunities and challenges applying gene editing to specialty crops, In Vitro Cellular & Developmental Biology-Plant, 57(4): 709-719. https://doi.org/10.1007/s11627-021-10208-x Battenfield S., Sheridan J., Silva L., Miclaus K., Dreisigacker S., Wolfinger R., Peña R., Singh R., Jackson E., Fritz A., Guzmán C., and Poland J., 2018, Breeding-assisted genomics: Applying meta-GWAS for milling and baking quality in CIMMYT wheat breeding program, PLoS ONE, 13(11): e0204757. https://doi.org/10.1371/journal.pone.0204757 PMid:30496187 PMCid:PMC6264898 Cirillo E., Kutmon M., Hernández M., Hooimeijer T., Adriaens M., Eijssen L., Parnell L., Coort S., and Evelo C., 2018, From SNPs to pathways: Biological interpretation of type 2 diabetes (T2DM) genome wide association study (GWAS) results, PLoS ONE, 13(4): e0193515. https://doi.org/10.1371/journal.pone.0193515 Coser S., Reddy R., Zhang J., Mueller D., Mengistu A., Wise K., Allen T., Singh A., and Singh A., 2017, Genetic architecture of charcoal rot (Macrophomina phaseolina) resistance in soybean revealed using a diverse panel, Frontiers in Plant Science, 8: 1626. https://doi.org/10.3389/fpls.2017.01626 Du H., Raman H., Kawasaki A., Perera G., Diffey S., Snowdon R., Raman R., and Ryan P., 2022, A genome-wide association study (GWAS) identifies multiple loci linked with the natural variation for Al3+ resistance in Brassica napus, Functional Plant Biology, 49(10): 845-860. https://doi.org/10.1071/FP22073 Fang C., and Luo J., 2018, Metabolic GWAS-based dissection of genetic bases underlying the diversity of plant metabolism, The Plant Journal, 97(1): 91-100. https://doi.org/10.1111/tpj.14097 PMid:30231195 Fikere M., Fikere M., Barbulescu D., Malmberg M., Spangenberg G., Cogan N., and Daetwyler H., 2020, Meta-analysis of GWAS in canola blackleg (Leptosphaeria maculans) disease traits demonstrates increased power from imputed whole-genome sequence, Scientific Reports, 10(1): 14300. https://doi.org/10.1038/s41598-020-71274-6 PMid:32868838 PMCid:PMC7459325 Geshnizjani N., Snoek B., Willems L., Rienstra J., Nijveen H., Hilhorst H., and Ligterink W., 2020, Detection of QTLs for genotype× environment interactions in tomato seeds and seedlings, Plant, cell & environment, 43(8), 1973-1988. https://doi.org/10.1111/pce.13788 PMid:32419153 PMCid:PMC7496158 Guo K., Chen T., Zhang P., Liu Y., Che Z., Shahinnia F., and Yang D., 2023, Meta-QTL analysis and in-silico transcriptome assessment for controlling chlorophyll traits in common wheat, The Plant Genome, 16(1): e20294. https://doi.org/10.1002/tpg2.20294 Harish A., Ramesh Kumar A., Manivannan S., and Senthil Kumar S., 2023, An outlook on GWAS with a special focus on solanaceous vegetable crops-A Review, International Journal of Plant & Soil Science, 35(20): 209-220. https://doi.org/10.9734/ijpss/2023/v35i203800 Ishii T., and Araki M., 2017, A future scenario of the global regulatory landscape regarding genome-edited crops, GM crops & food, 8(1): 44-56. https://doi.org/10.1080/21645698.2016.1261787 Iwata H., Minamikawa M.F., Kajiya-Kanegae H., Ishimori M., and Hayashi T., 2016, Genomics-assisted breeding in fruit trees. Breeding Science, 66(1): 100-115. https://doi.org/10.1270/jsbbs.66.100 Kao P., Leung K., Chan L., Yip S., and Yap M., 2017, Pathway analysis of complex diseases for GWAS, extending to consider rare variants, multi-omics and interactions, Biochimica et Biophysica Acta (BBA)-General Subjects, 1861(2): 335-353. https://doi.org/10.1016/j.bbagen.2016.11.030 PMid:27888147 Kiss T., Bányai J., Balla K., Mayer M., Berki Z., Horváth Á., Veisz O., Bedo Z., and Karsai I., 2019, Comparative study of the developmental traits and yield components of bread wheat under field conditions in several years of multi-sowing time experiments, Crop Science, 59(2), 591-604. https://doi.org/10.2135/cropsci2018.09.0531 Li D., Dossa K., Zhang Y., Wei X., Wang L., Zhang Y., Liu A., Zhou R., and Zhang X., 2018, GWAS uncovers differential genetic bases for drought and salt tolerances in sesame at the germination stage, Genes, 9(2): 87. https://doi.org/10.3390/genes9020087 PMid:29443881 PMCid:PMC5852583 Li M., Li X., Zhou Z., Wu P., Fang M., Pan X., Lin Q., Luo W., Wu G., and Li H., 2016, Reassessment of the Four Yield-related Genes Gn1a, DEP1, GS3, and IPA1 in Rice Using a CRISPR/Cas9 System, Frontiers in Plant Science, 7: 377. https://doi.org/10.3389/fpls.2016.00377

RkJQdWJsaXNoZXIy MjQ4ODYzMg==