TGMB_2025v15n5

Tree Genetics and Molecular Breeding 2025, Vol.15, No.5, 202-210 http://genbreedpublisher.com/index.php/tgmb 209 Karabin J., Mansfield I., and Frow E., 2021, Exploring presentations of sustainability by US synthetic biology companies, PLoS One, 16(9): e0257327. https://doi.org/10.1371/journal.pone.0257327 Kocaoğlan E., Radhakrishnan D., and Nakayama N., 2023, Synthetic developmental biology: molecular tools to re-design plant shoots and roots, Journal of Experimental Botany, 74(13): 3864-3876. https://doi.org/10.1093/jxb/erad169 Kozaeva E., Eida A., Gunady E., Dangl J., Conway J., and Brophy J., 2024, Roots of synthetic ecology: microbes that foster plant resilience in the changing climate, Current Opinion in Biotechnology, 88: 103172. https://doi.org/10.1016/j.copbio.2024.103172 Li F., Xie L., Shu X., Wen X., Zhang H., Xing H., Huang L., Xu C., Sun Y., and Lv J., 2025, Application of Torreya grandis peel biochar in cadmium contaminated soil remediation and pakchoi growth enhancement, International Journal of Phytoremediation, 27(9): 1178-1187. https://doi.org/10.1080/15226514.2025.2485304 Lou H., Ding M., Wu J., Zhang F., Chen W., Yang Y., Suo J., Yu W., Xu C., and Song L., 2019, Full-length transcriptome analysis of the genes involved in tocopherol biosynthesis in Torreya grandis, Journal of Agricultural and Food Chemistry, 67(7): 1877-1888. https://doi.org/10.1021/acs.jafc.8b06138 Lou H., Song L., Li X., Zi H., Chen W., Gao Y., Zheng S., Fei Z., Sun X., and Wu J., 2023, The Torreya grandis genome illuminates the origin and evolution of gymnosperm-specific sciadonic acid biosynthesis, Nature Communications, 14: 1315. https://doi.org/10.1038/s41467-023-37038-2 Lou H., Yang Y., Zheng S., Ma Z., Chen W., Yu C., Song L., and Wu J., 2022, Identification of key genes contributing to amino acid biosynthesis in Torreya grandis using transcriptome and metabolome analysis, Food Chemistry, 379: 132078. https://doi.org/10.1016/j.foodchem.2022.132078 Luo X., Wu S., Xue J., Hu H., He Z., Liu X., and Wu F., 2021, The bioactive peptide screening from Torreya grandis meal protein hydrolysates, Food Bioscience, 44: 101419. https://doi.org/10.1016/j.fbio.2021.101419 Lyu Y., Wang Y., and Shen X., 2025, The extraction of Torreya grandis growing areas using a spatial-spectral fused attention network and multitemporal sentinel-2 images: a case study of the Kuaiji Mountain region, Agriculture, 15(8): 829. https://doi.org/10.3390/agriculture15080829 Ma X., Huang D., Huang C., Tong Y., Yuan F., Ma X., Liu H., and Fu S., 2023, The application of nitrogen, phosphorus, and potassium regulate the growth and morphological development of Torreya grandis (Taxaceae) saplings, Horticulturae, 9(11): 1203. https://doi.org/10.3390/horticulturae9111203 McCarty N., and Ledesma-Amaro R., 2019, Synthetic biology tools to engineer microbial communities for biotechnology, Trends in Biotechnology, 37(2): 181-197. https://doi.org/10.1016/j.tibtech.2018.11.002 Morgan M., Diab J., Gilliham M., and Mortimer J., 2024, Green horizons: how plant synthetic biology can enable space exploration and drive on Earth sustainability, Current Opinion in Biotechnology, 86: 103069. https://doi.org/10.1016/j.copbio.2024.103069 Quan W., Xu Y., Xie Y., Peng F., and Lin Y., 2022, In vitro antioxidant properties and phenolic profile of acid aqueous ethanol extracts from Torreya grandis seed coat, Molecules, 27(17): 5560. https://doi.org/10.3390/molecules27175560 Raman R., Manalil S., Dénes D., and Nedungadi P., 2024, The role of forestry sciences in combating climate change and advancing sustainable development goals, Frontiers in Forests and Global Change, 7: 1409667. https://doi.org/10.3389/ffgc.2024.1409667 Roell M., and Zurbriggen M., 2019, The impact of synthetic biology for future agriculture and nutrition, Current Opinion in Biotechnology, 61: 102-109. https://doi.org/10.1016/j.copbio.2019.10.004 Shen H., Hou Y., Wang X., Li Y., Wu J., and Lou H., 2024, Genome-wide identification, expression analysis under abiotic stress and co-expression analysis of MATE gene family in Torreya grandis, International Journal of Molecular Sciences, 25(7): 3859. https://doi.org/10.3390/ijms25073859 Suo J., Tong K., Wu J., Ding M., Chen W., Yang Y., Lou H., Hu Y., Yu W., and Song L., 2019, Comparative transcriptome analysis reveals key genes in the regulation of squalene and β-sitosterol biosynthesis in Torreya grandis, Industrial Crops and Products, 131: 182-193. https://doi.org/10.1016/j.indcrop.2019.01.035 Suo J., Zhou Z., Farag M., Zhang Z., Wu J., Hu Y., and Song L., 2025, Ethylene mitigates nut decay and improves nut quality of Torreya grandis during postharvest by changing microbial community composition, Postharvest Biology and Technology, 219: 113250. https://doi.org/10.1016/j.postharvbio.2024.113250 Tan C., Kalhoro M., Faqir Y., Ma J., Osei M., and Khaliq G., 2022, Climate-resilient microbial biotechnology: a perspective on sustainable agriculture, Sustainability, 14(9): 5574. https://doi.org/10.3390/su14095574 Tao H., Zhu M., Chen M., Liu K., Zhang Z., Song L., and Gao F., 2024, Diversity of flavonoids in five Torreya grandis cultivars: integrating metabolome and transcriptome to elucidate potential applications for health and metabolic engineering, Food Research International, 198: 115374. https://doi.org/10.1016/j.foodres.2024.115374

RkJQdWJsaXNoZXIy MjQ4ODYzNA==