TGMB_2025v15n5

Tree Genetics and Molecular Breeding 2025, Vol.15, No.5, 176-184 http://genbreedpublisher.com/index.php/tgmb 183 Filimon R., Filimon R., Nechita A., Băetu M., Rotaru L., Arion C., and Patraș A., 2017, Assessment of quality characteristics of new Vitis vinifera L. cultivars for temperate climate vineyards, Acta Agriculturae Scandinavica, Section B- Soil and Plant Science, 67: 405-415. https://doi.org/10.1080/09064710.2017.1285959 Ganugi P., Caffi T., Gabrielli M., Secomandi E., Fiorini A., Zhang L., Bellotti G., Puglisi E., Fittipaldi M., Asinari F., Tabaglio V., Trevisan M., and Lucini L., 2023, A 3-year application of different mycorrhiza-based plant biostimulants distinctively modulates photosynthetic performance, leaf metabolism, and fruit quality in grapes (Vitis vinifera L.), Frontiers in Plant Science, 14: 1236199. https://doi.org/10.3389/fpls.2023.1236199 García-Abadillo J., Barba P., Carvalho T., Sosa-Zuñiga V., Lozano R., Carvalho H., Garcia-Rojas M., Salazar E., and Sánchez J., 2024, Dissecting the complex genetic basis of pre- and post-harvest traits in Vitis vinifera L. using genome-wide association studies, Horticulture Research, 11(2): uhad283. https://doi.org/10.1093/hr/uhad283 Gascuel Q., Diretto G., Monforte A., Fortes A., and Granell A., 2017, Use of natural diversity and biotechnology to increase the quality and nutritional content of tomato and grape, Frontiers in Plant Science, 8: 652. https://doi.org/10.3389/fpls.2017.00652 Gómez H., Niederauer G., Minatel I., Antunes E., Carneiro M., Sawaya A., Zanus M., Ritschel P., Quecini V., Lima G., and Marques M., 2024, Wine metabolome and sensory analyses demonstrate the oenological potential of novel grapevine genotypes for sustainable viticulture in warm climates, Journal of the Science of Food and Agriculture, 105(1): 329-341. https://doi.org/10.1002/jsfa.13832 Guo D., Zhao H., Li Q., Zhang G., Jiang J., Liu C., and Yu Y., 2019, Genome-wide association study of berry-related traits in grape [Vitis vinifera L.] based on genotyping-by-sequencing markers, Horticulture Research, 6: 11. https://doi.org/10.1038/s41438-018-0089-z Hu L., Xu T., Cai Y., Qin Y., Zheng Q., Chen T., Gong L., Yang J., Zhao Y., Chen J., Chen Z., Wu Y., and Yang Z., 2025, Identifying candidate genes for grape (Vitis vinifera L.) fruit firmness through genome-wide association studies, Journal of Agricultural and Food Chemistry, 73(14): 8413-8425. https://doi.org/10.1021/acs.jafc.5c00085 Jiang J., Fan X., Zhang Y., Tang X., Li X., Liu C., and Zhang Z., 2020, Construction of a high-density genetic map and mapping of firmness in grapes (Vitis vinifera L.) based on whole-genome resequencing, International Journal of Molecular Sciences, 21(3): 797. https://doi.org/10.3390/ijms21030797 Kui L., Tang M., Duan S., Wang S., and Dong X., 2020, Identification of selective sweeps in the domesticated table and wine grape (Vitis vinifera L.), Frontiers in Plant Science, 11: 572. https://doi.org/10.3389/fpls.2020.00572 Kumar M., Kumar R., Singh V., Pathak S., Kamboj A., Ahamad S., and Kumar A., 2023, Breeding approaches for quality improvement in fruit crops: strategies and achievements, International Journal of Environment and Climate Change, 13(5): 75-93. https://doi.org/10.9734/ijecc/2023/v13i51748 Lan H.F., 2025, The role of canopy management in optimizing grapevine yield and quality, International Journal of Horticulture, 15(3): 133-142. Laucou V., Launay A., Bacilieri R., Lacombe T., Adam-Blondon A., Bé rard A., Chauveau A., De Andrés M., Hausmann L., Ibáñez J., Paslier L., Maghradze D., Martínez-Zapater J., Maul E., Ponnaiah M., Töpfer R., Péros J., and Boursiquot J., 2018, Extended diversity analysis of cultivated grapevine Vitis vinifera with 10K genome-wide SNPs, PLoS One, 13(2): e0192540. https://doi.org/10.1371/journal.pone.0192540 Li Y., Xiao J., Yan Y., Liu W., Cui P., Xu C., Nan L., and Liu X., 2024, Multivariate analysis and optimization of the relationship between soil nutrients and berry quality of Vitis vinifera cv. Cabernet franc vineyards in the eastern foothills of the Helan Mountains, China, Horticulturae, 10(1): 61. https://doi.org/10.3390/horticulturae10010061 Liu Z., Wang N., Su Y., Long Q., Peng Y., Shangguan L., Zhang F., Cao S., Wang X., Ge M., Xue H., Ma Z., Liu W., Xu X., Li C., Cao X., Ahmad B., Su X., Liu Y., Huang G., Du M., Liu Z., Gan Y., Sun L., Fan X., Zhang C., Zhong H., Leng X., Ren Y., Dong T., Pei D., Wu X., Jin Z., Wang Y., Liu C., Chen J., Gaut B., Huang S., Fang J., Xiao H., and Zhou Y., 2024, Grapevine pangenome facilitates trait genetics and genomic breeding, Nature Genetics, 56: 2804-2814. https://doi.org/10.1038/s41588-024-01967-5 Niu Z., Zhang Z., Zhao Y., Xuan L., Chen Z., and Yang L., 2025, Transcription factor VvbHLH137 positively regulates anthocyanin accumulation in grape (Vitis vinifera), Plants, 14(6): 871. https://doi.org/10.3390/plants14060871 Rahman M., Liu X., Wang X., and Fan B., 2024, Grapevine gray mold disease: infection, defense and management, Horticulture Research, 11(9): uhae182. https://doi.org/10.1093/hr/uhae182 Rao V., 2023, Microsatellite markers and genetic diversity analysis in grape (Vitis vinifera L), International Journal for Research in Applied Science and Engineering Technology, 11: 92-96. https://doi.org/10.22214/ijraset.2023.55581 Savoi S., Santiago A., Orduña L., and Matus J., 2022, Transcriptomic and metabolomic integration as a resource in grapevine to study fruit metabolite quality traits, Frontiers in Plant Science, 13: 937927. https://doi.org/10.3389/fpls.2022.937927 Sosa-Zuniga V., Valenzuela Á., Barba P., Cancino C., Romero-Romero J., and Arce-Johnson P., 2022, Powdery mildew resistance genes in vines: an opportunity to achieve a more sustainable viticulture, Pathogens, 11(6): 703. https://doi.org/10.3390/pathogens11060703

RkJQdWJsaXNoZXIy MjQ4ODYzNA==