TGMB_2025v15n4

Tree Genetics and Molecular Breeding 2025, Vol.15, No.4, 147-153 http://genbreedpublisher.com/index.php/tgmb 153 Hu T., Xiong K., Yu Y., Wang J., and Wu Y., 2023, Ecological stoichiometry and homeostasis characteristics of plant-litter-soil system with vegetation restoration of the karst desertification control, Frontiers in Plant Science, 14: 1224691. https://doi.org/10.3389/fpls.2023.1224691 Huang X., Wang H., Qu S., Luo W., and Gao Z., 2021, Using artificial neural network in predicting the key fruit quality of loquat, Food Science and Nutrition, 9(3): 1780-1791. https://doi.org/10.1002/fsn3.2166 Huang X., Wang H.K., Xue S., Luo W.J., and Gao Z.H., 2020, Effects of greenhouse cultivation on fruit quality and mineral nutrition in loquat fruit, Journal of Fruit Science, 37(4): 540-552. Nordi N., Coelho L., Leonel S., Silva M., Putti F., Leonel M., Furlan M., and Tecchio M., 2025, Yield and fruit quality of loquat trees as a result of flower bud thinning, Horticulturae, 11(3): 270. https://doi.org/10.3390/horticulturae11030270 Pareek S., Benkeblia N., Janick J., Cao S., and Yahia E., 2014, Postharvest physiology and technology of loquat (Eriobotrya japonica Lindl.) fruit, Journal of the Science of Food and Agriculture, 94(8): 1495-1504. https://doi.org/10.1002/jsfa.6560 Su W., Deng C., Wei W., Chen X., Lin H., Chen Y., Xu Q., Tong Z., Zheng S., and Jiang J., 2024, Double-heading produces larger fruit via inhibiting EjFWLs expression and promoting cell division at the early stage of loquat fruit development, Horticulturae, 10(8): 793. https://doi.org/10.3390/horticulturae10080793 Tang L., Yin D., Chen C., Yu D., and Han W., 2019, Optimal design of plant canopy based on light interception: a case study with loquat, Frontiers in Plant Science, 10: 364. https://doi.org/10.3389/fpls.2019.00364 Xu F., Chu C., and Xu Z., 2020, Effects of different fertilizer formulas on the growth of loquat rootstocks and stem lignification, Scientific Reports, 10: 1033. https://doi.org/10.1038/s41598-019-57270-5 Yang Z., Xu Y., Song P., Li X., Zhou J., Lin L., Xia H., Liang D., Luo X., Zhang H., Deng Q., and Wang Y., 2023, Effects of gamma amino butyric acid (GABA) on nutrient uptake of loquat [Eriobotrya japonica (Thunb.) Lindl.] seedlings, Horticulturae, 9(2): 196. https://doi.org/10.3390/horticulturae9020196 Zargar B., Mir M., Ganai S., Mir S., Shah M., and Banday S., 2018, Postharvest biology and technology of loquat, In: Mir S., Shah M., and Mir M. (eds.), Postharvest biology and technology of temperate fruits, Springer, Cham, Switzerland, pp.285-298. https://doi.org/10.1007/978-3-319-76843-4_12 Zhang Y., Liang Z., Zheng L., Wang X., Chen H., Xu T., and Tang M., 2025, Impact of long-term loquat cultivation on rhizosphere soil characteristics and AMF community structure: implications for fertilizer management, Frontiers in Plant Science, 16: 1549384. https://doi.org/10.3389/fpls.2025.1549384 Zhao X.Y., 2024, Comprehensive review of bioactive compounds in loquat and their pharmacological mechanisms, Medicinal Plant Research, 14(4): 196-209. https://doi.org/10.5376/mpr.2024.14.0017 Zhao Y., Gong L., Wang F., Liu Y., Ai X., Zhu W., Zhang Y., Gan Z., He H., and Wang H., 2024, Preliminary study of distribution of soil available nutrients in loquat (Eriobotrya japonica) orchards and their responses to environmental factors based on path analysis model, Agronomy, 14(12): 2970. https://doi.org/10.3390/agronomy14122970

RkJQdWJsaXNoZXIy MjQ4ODYzNA==