TGMB_2025v15n3

Tree Genetics and Molecular Breeding 2025, Vol.15, No.3, 128-137 http://genbreedpublisher.com/index.php/tgmb 137 Sobral M., and Sampedro L., 2022, Phenotypic, epigenetic, and fitness diversity within plant genotypes, Trends in Plant Science, 27(9): 843-846. https://doi.org/10.1016/j.tplants.2022.06.008 Tresas T., Isaioglou I., Roussis A., and Haralampidis K., 2025, A brief overview of the epigenetic regulatory mechanisms in plants, International Journal of Molecular Sciences, 26(10): 4700. https://doi.org/10.3390/ijms26104700 Varotto S., Tani E., Abraham E., Krugman T., Kapazoglou A., Melzer R., Radanović A., and Miladinović D., 2020, Epigenetics: possible applications in climate-smart crop breeding, Journal of Experimental Botany, 71(17): 5223-5236. https://doi.org/10.1093/jxb/eraa188 Wan X., Sun D., Nie Y., Wang Q., Zhang T., Wang R., Li F., Zhao X., and Gao C., 2024, Analysis and evaluation of Camellia oleifera Abel. germplasm fruit traits from the high-altitude areas of East Guizhou Province, China, Scientific Reports, 14: 18440. https://doi.org/10.1038/s41598-024-69454-9 Wang X., and Yamaguchi N., 2024, Cause or effect: probing the roles of epigenetics in plant development and environmental responses, Current Opinion in Plant Biology, 81: 102569. https://doi.org/10.1016/j.pbi.2024.102569 Wu B., Ruan C., Han P., Ruan D., Xiong C., Ding J., and Liu S., 2019, Comparative transcriptomic analysis of high- and low-oil Camellia oleifera reveals a coordinated mechanism for the regulation of upstream and downstream multigenes for high oleic acid accumulation, 3 Biotech, 9: 257. https://doi.org/10.1007/s13205-019-1792-7 Xu Y., Zhang L., and Wu G., 2018, Epigenetic regulation of juvenile-to-adult transition in plants, Frontiers in Plant Science, 9: 1048. https://doi.org/10.3389/fpls.2018.01048 Xue Y., Cao X., Chen X., Deng X., Deng X., Ding Y., Dong A., Duan C., Fang X., Gong L., Gong Z., Gu X., He C., He H., He S., He X., He Y., He Y., Jia G., Jiang D., Jiang J., Lai J., Lang Z., Li C., Li Q., Li X., Liu B., Liu B., Luo X., Qi Y., Qian W., Ren G., Song Q., Song X., Tian Z., Wang J., Wang Y., Wu L., Wu Z., Xia R., Xiao J., Xu L., Xu Z., Yan W., Yang H., Zhai J., Zhang Y., Zhao Y., Zhong X., Zhou D., Zhou M., Zhou Y., Zhu B., Zhu J., and Liu Q., 2025, Epigenetics in the modern era of crop improvements, Science China Life sciences, 68: 1570-1609. Yang D., Wang R., Lai H., He Y., Chen Y., Xun C., Zhang Y., and He Z., 2024, Comparative transcriptomic and lipidomic analysis of fatty acid accumulation in three Camellia oleifera varieties during seed maturing, Journal of Agricultural and Food Chemistry, 72(32): 18257-18270. https://doi.org/10.1021/acs.jafc.4c03614 Yang L., Zhang P., Wang Y., Hu G., Guo W., Gu X., and Pu L., 2022, Plant synthetic epigenomic engineering for crop improvement, Science China Life Sciences, 65(11): 2191-2204. https://doi.org/10.1007/s11427-021-2131-6 Yao X.Z., Tang H., Jiao Y.J., He Y.M., and Lu L.T., 2024, Genomic insights into the evolutionary history of the Camellia genus: comprehensive analysis of phylogenetic relationships, speciation, and adaptive evolution, Journal of Tea Science Research, 14(1): 64-78. https://doi.org/10.5376/jtsr.2024.14.0007 Ye C., He Z., Peng J., Wang R., Wang X., Fu M., Zhang Y., Wang A., Liu Z., Jia G., Chen Y., and Tian B., 2023, Genomic and genetic advances of oiltea-camellia (Camellia oleifera), Frontiers in Plant Science, 14: 1101766. Ye Z., Wu Y., Muhammad Z., Yan W., Yu J., Zhang J., Yao G., and Hu X., 2020, Complementary transcriptome and proteome profiling in the mature seeds of Camellia oleifera from Hainan Island, PLoS One, 15(2): e0226888. https://doi.org/10.1371/journal.pone.0226888 Ye Z., Yu J., Yan W., Zhang J., Yang D., Yao G., Liu Z., Wu Y., and Hou X., 2021, Integrative iTRAQ-based proteomic and transcriptomic analysis reveals the accumulation patterns of key metabolites associated with oil quality during seed ripening of Camellia oleifera, Horticulture Research, 8: 157. https://doi.org/10.1038/s41438-021-00591-2 Zhang F., Li Z., Zhou J., Gu Y., and Tan X., 2021, Comparative study on fruit development and oil synthesis in two cultivars of Camellia oleifera, BMC Plant Biology, 21: 348. https://doi.org/10.1186/s12870-021-03114-2 Zhu H., Wang F., Xu Z., Wang G., Hu L., Cheng J., Ge X., Liu J., Chen W., Li Q., Xue F., Liu F., Li W., Wu L., Cheng X., Tang X., Yang C., Lindsey K., Zhang X., Ding F., Hu H., Hu X., and Jin S., 2024, The complex hexaploid oil-Camellia genome traces back its phylogenomic history and multi- omics analysis of Camellia oil biosynthesis, Plant Biotechnology Journal, 22(10): 2890-2906. https://doi.org/10.1111/pbi.14412

RkJQdWJsaXNoZXIy MjQ4ODYzNA==