Tree Genetics and Molecular Breeding 2025, Vol.15, No.3, 128-137 http://genbreedpublisher.com/index.php/tgmb 136 Ediriweera M., and Sandamalika W., 2024, The epigenetic impact of fatty acids as DNA methylation modulators, Drug Discovery Today, 30(2): 104277. https://doi.org/10.1016/j.drudis.2024.104277 Gong W., Song Q., Ji K., Gong S., Wang L., Chen L., Zhang J., and Yuan D., 2020, Full-length transcriptome from Camellia oleifera seed provides insight into the transcript variants involved in oil biosynthesis, Journal of Agricultural and Food Chemistry, 68(49): 14670-14683. https://doi.org/10.1021/acs.jafc.0c05381 He Y., and Li Z., 2018, Epigenetic environmental memories in plants: establishment, maintenance, and reprogramming, Trends in Genetics, 34(11): 856-866. https://doi.org/10.1016/j.tig.2018.07.006 Jo L., and Nodine M., 2024, To remember or forget: Insights into the mechanisms of epigenetic reprogramming and priming in early plant embryos, Current Opinion in Plant Biology, 81: 102612. https://doi.org/10.1016/j.pbi.2024.102612 Kong Q., Chen T., Wang H., Zheng S., Wang H., Liang H., Zhou L., Yang H., Jiang X., Ding C., and Feng S., 2025, Variation of Camellia oleifera fruit traits and nutritional constituents in seed oil during development and post-harvest, Scientia Horticulturae, 339: 113903. https://doi.org/10.1016/j.scienta.2024.113903 Kumar R.M.S., Wang Y., Zhang X., Cheng H., Sun L., He S., and Hao F., 2020, Redox components: key regulators of epigenetic modifications in plants, International Journal of Molecular Sciences, 21(4): 1419. https://doi.org/10.3390/ijms21041419 Li S., Huang H., Ma X., Hu Z., Li J., and Yin H., 2022, Characterizations of MYB transcription factors in Camellia oleifera reveal the key regulators involved in oil biosynthesis, Horticulturae, 8(8): 742. https://doi.org/10.3390/horticulturae8080742 Liang S., Li Y., Chen Y., Huang H., Zhou R., and Ma T., 2023, Application and prospects of single-cell and spatial omics technologies in woody plants, Forestry Research, 3: 27. https://doi.org/10.48130/FR-2023-0027 Liang Z., Riaz A., Chachar S., Ding Y., Du H., and Gu X., 2019, Epigenetic modifications of mRNA and DNA in plants, Molecular Plant, 13(1): 14-30. https://doi.org/10.1016/j.molp.2019.12.007 Lin P., Chai J., Wang A., Zhong H., and Wang K., 2024, High-density genetic map construction and quantitative trait locus analysis of fruit- and oil-related traits in Camellia oleifera based on double digest restriction site-associated DNA sequencing, International Journal of Molecular Sciences, 25(16): 8840. https://doi.org/10.3390/ijms25168840 Lin P., Wang K., Wang Y., Hu Z., Yan C., Huang H., Ma X., Cao Y., Long W., Liu W., Li X., Fan Z., Li J., Ye N., Ren H., Yao X., and Yin H., 2022, The genome of oil-Camellia and population genomics analysis provide insights into seed oil domestication, Genome Biology, 23: 14. https://doi.org/10.1186/s13059-021-02599-2 Lin P., Wang K., Zhou C., Xie Y., Yao X., and Yin H., 2018, Seed transcriptomics analysis in Camellia oleifera uncovers genes associated with oil content and fatty acid composition, International Journal of Molecular Sciences, 19(1): 118. https://doi.org/10.3390/ijms19010118 Lin P., Yin H., Yan C., Yao X., and Wang K., 2019, Association genetics identifies single nucleotide polymorphisms related to kernel oil content and quality in Camellia oleifera, Journal of Agricultural and Food Chemistry, 67(9): 2547-2562. https://doi.org/10.1021/acs.jafc.8b03399 Liu L., Xu J., Chen J., Yang B., Yang C., Yang Y., Wang K., Zhuo R., and Yao X., 2023, The LEA2 gene sub-family: characterization, evolution, and potential functions in Camellia oleifera seed development and stress response, Scientia Horticulturae, 322: 112392. https://doi.org/10.1016/j.scienta.2023.112392 Miryeganeh M., 2021, Plants’ epigenetic mechanisms and abiotic stress, Genes, 12(8): 1106. https://doi.org/10.3390/genes12081106 Mladenov V., Fotopoulos V., Kaiserli E., Karalija E., Maury S., Baránek M., Segal N., Testillano P., Vassileva V., Pinto G., Nagel M., Hoenicka H., Miladinović D., Gallusci P., Vergata C., Kapazoglou A., Abraham E., Tani E., Gerakari M., Sarri E., Avramidou E., Gašparović M., and Martinelli F., 2021, Deciphering the epigenetic alphabet involved in transgenerational stress memory in crops, International Journal of Molecular Sciences, 22(13): 7118. https://doi.org/10.3390/ijms22137118 Moreno-Pérez A., Santos-Pereira J., Martins-Noguerol R., DeAndrés-Gil C., Troncoso-Ponce M., Venegas-Calerón M., Sánchez R., Garcés R., Salas J., Tena J., and Martínez-Force E., 2021, Genome-wide mapping of histone H3 lysine 4 trimethylation (H3K4me3) and its involvement in fatty acid biosynthesis in sunflower developing seeds, Plants, 10(4): 706. https://doi.org/10.3390/plants10040706 Radford E., 2018, Exploring the extent and scope of epigenetic inheritance, Nature Reviews Endocrinology, 14: 345-355. https://doi.org/10.1038/s41574-018-0005-5 Ramirez-Prado J., Abulfaraj A., Rayapuram N., Benhamed M., and Hirt H., 2018, Plant immunity: from signaling to epigenetic control of defense, Trends in Plant Science, 23(9): 833-844. Singh V., Ahmed S., Saini D., Gahlaut V., Chauhan S., Khandare K., Kumar A., Sharma P., and Kumar J., 2023, Manipulating epigenetic diversity in crop plants: techniques, challenges and opportunities, Biochimica et Biophysica Acta- General subjects, 1868(2): 130544. https://doi.org/10.1016/j.bbagen.2023.130544
RkJQdWJsaXNoZXIy MjQ4ODYzNA==