Tree Genetics and Molecular Breeding 2025, Vol.15, No.3, 117-127 http://genbreedpublisher.com/index.php/tgmb 126 Liu R., Wen S., Sun T., Wang R., Zuo W., Yang T., Wang C., Hu J., Lu M., and Wang L., 2022, PagWOX11/12a positively regulates PagSAUR36 gene that enhances adventitious root development in poplar, Journal of Experimental Botany, 73(22): 7298-7311. https://doi.org/10.1093/jxb/erac345 Liu S., Lan Y., He T., Xiong R., Wu C., Xiang Y., and Yan H., 2021, GEPSdb: the gene expression database of poplar under stress, The Plant Genome, 15(1): e20163. https://doi.org/10.1002/tpg2.20163 Luo J., Wang Y., Li Z., Wang Z., Cao X., and Wang N., 2024, Haplotype-resolved genome assembly of poplar line NL895 provides a valuable tree genomic resource, Forestry Research, 4: e015. https://doi.org/10.48130/forres-0024-0013 Martinez C., 2023, Plant-microbe interactions: mining heritable root-associated microbiota across environments, Current Biology, 33(10): R413-R415. https://doi.org/10.1016/j.cub.2023.03.068 Nagle M., Yuan J., Kaur D., Ma C., Peremyslova E., Jiang Y., Zahl B., De Rivera A., Muchero W., Fuxin L., and Strauss S., 2022, GWAS identifies candidate genes controlling adventitious rooting in Populus trichocarpa, Horticulture Research, 10(8): uhad125. https://doi.org/10.1093/hr/uhad125 Qiu D., Bai S., Ma J., Zhang L., Shao F., Zhang K., Yang Y., Sun T., Huang J., Zhou Y., Galbraith D., Wang Z., and Sun G., 2019, The genome of Populus alba × Populus tremula var. glandulosa clone 84K, DNA Research, 26(5): 423-431. https://doi.org/10.1093/dnares/dsz020 Schaefer E., Gehring C., Phillips R., Gadrat E., and Karst J., 2024, Variation of root functional traits indicates flexible below-ground economic strategies of the riparian tree species Populus fremontii, Functional Ecology, 38(9): 2003-2014. https://doi.org/10.1111/1365-2435.14628 Shi T., Jia K., Bao Y., Nie S., Tian X., Yan X., Chen Z., Li Z., Zhao S., Ma H., Zhao Y., Li X., Zhang R., Guo J., Zhao W., El-Kassaby Y., Müller N., Van De Peer Y., Wang X., Street N., Porth I., An X., and Mao J., 2024a, High-quality genome assembly enables prediction of allele-specific gene expression in hybrid poplar, Plant Physiology, 195: 652-670. https://doi.org/10.1093/plphys/kiae078 Shi T., Zhang X., Hou Y., Jia C., Dan X., Zhang Y., Jiang Y., Lai Q., Feng J., Feng J., Ma T., Wu J., Liu S., Zhang L., Long Z., Chen L., Street N., Ingvarsson P., Liu J., Yin T., and Wang J., 2024b, The super-pangenome of Populus unveil genomic facets for its adaptation and diversification in widespread forest trees, Molecular Plant, 17(5): 725-746. https://doi.org/10.1016/j.molp.2024.03.009 Shu W., Zhou H., Jiang C., Zhao S., Wang L., Li Q., Yang Z., Groover A., and Lu M., 2018, The auxin receptor TIR1 homolog (PagFBL 1) regulates adventitious rooting through interactions with Aux/IAA28 in Populus, Plant Biotechnology Journal, 17(2): 338-349. https://doi.org/10.1111/pbi.12980 Sun P., Jia H., Zhang Y., Li J., Lu M., and Hu J., 2019, Deciphering genetic architecture of adventitious root and related shoot traits in Populus using QTL mapping and RNA-Seq data, International Journal of Molecular Sciences, 20(24): 6114. https://doi.org/10.3390/ijms20246114 Tan J., Yu W., Liu Y., Guo Y., Liu N., Fu H., Di N., Duan J., Li X., and Xi B., 2023, Response of fine-root traits of Populus tomentosa to drought in shallow and deep soil, Forests, 14(8): 1657. https://doi.org/10.3390/f14081657 Wang T.Y., Wang P., Wang Z.L., Niu G.Y., Yu J.J., Ma N., Wu Z.N., Pozdniakov S.P., and Yan D.H., 2021, Drought adaptability of phreatophytes: insight from vertical root distribution in drylands of China, Journal of Plant Ecology, 14(6): 1128-1142. https://doi.org/10.1093/jpe/rtab059 Wille L., Messmer M., Studer B., and Hohmann P., 2018, Insights to plant-microbe interactions provide opportunities to improve resistance breeding against root diseases in grain legumes, Plant, Cell and Environment, 42(1): 20-40. https://doi.org/10.1111/pce.13214 Xia Z., He Y., Xu J., Zhu Z., Korpelainen H., and Li C., 2022, Rhizosphere microbe populations but not root traits induced by drought in Populus euphratica males, Soil Ecology Letters, 5: 220152. https://doi.org/10.1007/s42832-022-0152-4 Xiao Z., Zhang Y., Liu M., Zhan C., Yang X., Nvsvrot T., Yan Z., and Wang N., 2020, Coexpression analysis of a large-scale transcriptome identified a calmodulin-like protein regulating the development of adventitious roots in poplar, Tree Physiology, 40(10): 1405-1419. https://doi.org/10.1093/treephys/tpaa078 Xu C., Tao Y., Fu X., Guo L., Xing H., Li C., Yang Z., Su H., Wang X., Hu J., Fan D., Chiang V., and Luo K., 2021, The microRNA476a-RFL module regulates adventitious root formation through a mitochondria-dependent pathway in Populus, The New Phytologist, 230(5): 2011-2028. https://doi.org/10.1111/nph.17252 Xu L., Liu C., Ren Y., Huang Y., Liu Y., Feng S., Zhong X., Fu D., Zhou X., Wang J., Liu Y., and Yang M., 2024, Nanoplastic toxicity induces metabolic shifts in Populus × euramericana cv. ‘74/76’ revealed by multi-omics analysis, Journal of Hazardous Materials, 470: 134148. https://doi.org/10.1016/j.jhazmat.2024.134148
RkJQdWJsaXNoZXIy MjQ4ODYzNA==