Tree Genetics and Molecular Breeding 2025, Vol.15, No.3, 117-127 http://genbreedpublisher.com/index.php/tgmb 125 Bannoud F., and Bellini C., 2021, Adventitious rooting in Populus species: update and perspectives, Frontiers in Plant Science, 12: 668837. https://doi.org/10.3389/fpls.2021.668837 Biselli C., Vietto L., Rosso L., Cattivelli L., Nervo G., and Fricano A., 2022, Advanced breeding for biotic stress resistance in poplar, Plants, 11(15): 2032. https://doi.org/10.3390/plants11152032 Bünger W., Jiang X., Müller J., Hurek T., and Reinhold-Hurek B., 2020, Novel cultivated endophytic Verrucomicrobia reveal deep-rooting traits of bacteria to associate with plants, Scientific Reports, 10: 8692. https://doi.org/10.1038/s41598-020-65277-6 Cai H., Yang C., Liu S., Qi H., Wu L., Xu L., and Xu M., 2019, MiRNA-target pairs regulate adventitious rooting in Populus: a functional role for miR167a and its target Auxin response factor 8, Tree Physiology, 39(11): 1922-1936. https://doi.org/10.1093/treephys/tpz085 Demiwal P., Tayade S., Yadav S., and Sircar D., 2024, A metabolomics perspective on root-derived plant immunity and phytohormone interaction, Physiologia Plantarum, 176(1): e14150. https://doi.org/10.1111/ppl.14150 Du J., Du C., Ge X., Wen S., Zhou X., Zhang L., and Hu J., 2022, genome-wide analysis of the AAAP gene family in Populus and functional analysis of PsAAAP21 in root growth and amino acid transport, International Journal of Molecular Sciences, 24(1): 624. https://doi.org/10.3390/ijms24010624 Du J., Ge X., Wei H., Zhang M., Bai Y., Zhang L., and Hu J., 2023, PsPRE1 is a basic helix-loop-helix transcription factor that confers enhanced root growth and tolerance to salt stress in poplar, Forestry Research, 3: 16. https://doi.org/10.48130/FR-2023-0016 Fröschel C., Komorek J., Attard A., Marsell A., López-Arboleda W., Berre L., Wolf E., Geldner N., Waller F., Korte A., and Dröge-Laser W., 2020, Plant roots employ cell-layer-specific programs to respond to pathogenic and beneficial microbes, Cell Host and Microbe, 29(2): 299-310. https://doi.org/10.1016/j.chom.2020.11.014 Frymark-Szymkowiak A., and Kieliszewska-Rokicka B., 2023, The fine root distribution and morphology of mature white poplar in natural temperate riverside forests under periodically flooded or dry hydrological conditions, Forests, 14(2): 223. https://doi.org/10.3390/f14020223 Frymark-Szymkowiak A., Kulczyk-Skrzeszewska M., and Tyburska-Woś J., 2023, Seasonal dynamics in mycorrhizal colonization and fine root features of the white poplar (Populus alba L.) in natural temperate riverside forests with two contrasting soils, Forests, 15(1): 64. https://doi.org/10.3390/f15010064 Fu R., Liu L., Wang Z., Hua Z., Bei S., Yu Y., and Li X., 2025, Synergy of diazotrophs with native soil microbes improves poplar traits, Industrial Crops and Products, 224: 120311. https://doi.org/10.1016/j.indcrop.2024.120311 Grünhofer P., Stöcker T., Guo Y., Li R., Lin J., Ranathunge K., Schoof H., and Schreiber L., 2022, Populus × canescens root suberization in reaction to osmotic and salt stress is limited to the developing younger root tip region, Physiologia Plantarum, 174(5): e13765. https://doi.org/10.1111/ppl.13765 Han M., Xu X., Li X., Xu M., Hu M., Xiong Y., Feng J., Wu H., Zhu H., and Su T., 2022, New insight into aspartate metabolic pathways in Populus: linking the root responsive isoenzymes with amino acid biosynthesis during incompatible interactions of Fusarium solani, International Journal of Molecular Sciences, 23(12): 6368. https://doi.org/10.3390/ijms23126368 Han Y.P., 2024, Application of CRISPR/Cas9 technology in editing poplar drought resistance genes, Molecular Plant Breeding, 15(2): 81-89. https://doi.org/10.5376/mpb.2024.15.0010 He X., Zhang Q., Li B., Jin Y., Jiang L., and Wu R., 2021, Network mapping of root-microbe interactions in Arabidopsis thaliana, NPJ Biofilms and Microbiomes, 7: 72. https://doi.org/10.1038/s41522-021-00241-4 Li J., Zhang J., Jia H., Liu B., Sun P., Hu J., Wang L., and Lu M., 2018, The WUSCHEL-related homeobox 5a (PtoWOX5a) is involved in adventitious root development in poplar, Tree Physiology, 38: 139-153. https://doi.org/10.1093/treephys/tpx118 Li M., Wang D., Fu Y., Zhao M., Li Z., Shen W., Pan L., Su X., and Zhao J., 2024, Poplar adventitious roots induced by stem canker pathogens: an experimental system for studying roots biology and light response-related processes, Journal of Visualized Experiments, 212: e67304. https://doi.org/10.3791/67304 Li Z., Chen F., Li M., Tang X., Liu Y., Huang M., Niu H., Liu C., Wang H., Xia X., and Yin W., 2025, Genome-wide identification and functional analysis of CLAVATA3/EMBRYO SURROUNDING REGION-RELATED (CLE) in three Populus species, International Journal of Molecular Sciences, 26(5): 1944. https://doi.org/10.3390/ijms26051944 Lian C., Yao K., Duan H., Li Q., Liu C., Yin W., and Xia X., 2018, Exploration of ABA responsive miRNAs reveals a new hormone signaling crosstalk pathway regulating root growth of Populus euphratica, International Journal of Molecular Sciences, 19(5): 1481. https://doi.org/10.3390/ijms19051481 Liang Z., Gong H., Lu K., and Zhang X., 2024, The genetic architecture of the root system during seedling emergence in Populus euphratica under salt stress and control environments, Applied Sciences, 14(6): 2225. https://doi.org/10.3390/app14062225
RkJQdWJsaXNoZXIy MjQ4ODYzNA==