Tree Genetics and Molecular Breeding 2025, Vol.15, No.3, 108-116 http://genbreedpublisher.com/index.php/tgmb 115 Conti G., Xoconostle-Cazares B., Marcelino-Pérez G., Hopp H., and Reyes C., 2021, Citrus genetic transformation: an overview of the current strategies and insights on the new emerging technologies, Frontiers in Plant Science, 12: 768197. https://doi.org/10.3389/fpls.2021.768197 Fan Z., Jeffries K., Sun X., Olmedo G., Zhao W., Mattia M., Stover E., Manthey J., Baldwin E., Lee S., Gmitter F., Plotto A., and Bai J., 2024, Chemical and genetic basis of orange flavor, Science Advances, 10(9): eadk2051. https://doi.org/10.1126/sciadv.adk2051 Feng G., Wu J., Xu Y., Lu L., and Yi H., 2021, High- spatiotemporal- resolution transcriptomes provide insights into fruit development and ripening in Citrus sinensis, Plant Biotechnology Journal, 19(7): 1337-1353. https://doi.org/10.1111/pbi.13549 Ferrer V., Costantino G., Paoli M., Paymal N., Quinton C., Ollitrault P., Tomi F., and Luro F., 2021, Intercultivar diversity of sour orange (Citrus aurantium L.) based on genetic markers, phenotypic characteristics, aromatic compounds and sensorial analysis, Agronomy, 11(6): 1084. https://doi.org/10.3390/agronomy11061084 Ferrer V., Paymal N., Costantino G., Paoli M., Quinton C., Tomi F., and Luro F., 2023, Correspondence between the compositional and aromatic diversity of leaf and fruit essential oils and the pomological diversity of 43 sweet oranges (Citrus × aurantium var sinensis L.), Plants, 12(5): 990. https://doi.org/10.3390/plants12050990 Gill K., Kumar P., Kumar A., Kapoor B., Sharma R., and Joshi A., 2022, Comprehensive mechanistic insights into the citrus genetics, breeding challenges, biotechnological implications, and omics-based interventions, Tree Genetics & Genomes, 18: 9. https://doi.org/10.1007/s11295-022-01544-z Goh R., Pua A., Luro F., Ee K., Huang Y., Marchi E., Liu S., Lassabliere B., and Yu B., 2022, Distinguishing citrus varieties based on genetic and compositional analyses, PLoS One, 17(4): e0267007. https://doi.org/10.1371/journal.pone.0267007 Hu Z., Chen M., Zhu K., Liu Y., Wen H., Kong J., Chen M., Cao L., Ye J., Zhang H., Deng X., Chen J., and Xu J., 2024, Multiomics integrated with sensory evaluations to identify characteristic aromas and key genes in a novel brown navel orange (Citrus sinensis), Food Chemistry, 444: 138613. https://doi.org/10.1016/j.foodchem.2024.138613 Liang X., Wang H., Xu W., Liu X., Zhao C., Chen J., Wang D., Xu S., Cao J., Sun C., and Wang Y., 2024, Metabolome and transcriptome analysis revealed the basis of the difference in antioxidant capacity in different tissues of Citrus reticulata ‘Ponkan’, Antioxidants, 13(2): 243. https://doi.org/10.3390/antiox13020243 Liao Z., Liu X., Zheng J., Zhao C., Wang D., Xu Y., and Sun C., 2023, A multifunctional true caffeoyl coenzyme A O-methyltransferase enzyme participates in the biosynthesis of polymethoxylated flavones in citrus, Plant Physiology, 192(3): 2049-2066. https://doi.org/10.1093/plphys/kiad249 Lu H., Zhao H., Zhong T., Chen D., Wu Y., and Xie Z., 2024, Molecular regulatory mechanisms affecting fruit aroma, Foods, 13(12): 1870. https://doi.org/10.3390/foods13121870 Mansoor S., and Kim I., 2024, Classical to modern biotechnology approaches, applications and future prospects in citrus breeding, Plant Biotechnology Reports, 18: 813-827. https://doi.org/10.1007/s11816-024-00949-7 Maoz I., Lewinsohn E., and Gonda I., 2022, Amino acids metabolism as a source for aroma volatiles biosynthesis, Current Opinion in Plant Biology, 67: 102221. https://doi.org/10.1016/j.pbi.2022.102221 Mei X., Zhu K., Yan D., Jia H., Luo W., Ye J., and Deng X., 2024, Developing a simple and rapid method for cell-specific transcriptome analysis through laser microdissection: insights from citrus rind with broader implications, Plant Methods, 20: 113. https://doi.org/10.1186/s13007-024-01242-y Miao W., Liu X., Li N., Bian X., Zhao Y., He J., Zhou T., and Wu J., 2022, Polarity-extended composition profiling via LC-MS-based metabolomics approaches: a key to functional investigation of Citrus aurantium L., Food Chemistry, 405: 134988. https://doi.org/10.1016/j.foodchem.2022.134988 Pan X., Bi S., Lao F., and Wu J., 2023, Factors affecting aroma compounds in orange juice and their sensory perception: a review, Food Research International, 169: 112835. https://doi.org/10.1016/j.foodres.2023.112835 Rodríguez A., Andrés S., Cervera M., Redondo A., Alquézar B., Shimada T., Gadea J., Rodrigo M., Zacarías L., Palou L., López M., Castanera P., and Peña L., 2011, Terpene down-regulation in orange reveals the role of fruit aromas in mediating interactions with insect herbivores and pathogens, Plant Physiology, 156(2): 793-802. https://doi.org/10.1104/pp.111.176545 Salonia F., Ciacciulli A., Poles L., Pappalardo H., La Malfa S., and Licciardello C., 2020, New plant breeding techniques in citrus for the improvement of important agronomic traits. a review, Frontiers in Plant Science, 11: 1234. https://doi.org/10.3389/fpls.2020.01234 Sharon-Asa L., Shalit M., Frydman A., Bar E., Holland D., Or E., Lavi U., Lewinsohn E., and Eyal Y., 2003, Citrus fruit flavor and aroma biosynthesis: isolation, functional characterization, and developmental regulation of Cstps1, a key gene in the production of the sesquiterpene aroma compound valencene, The Plant Journal, 36(5): 664-674. https://doi.org/10.1046/j.1365-313X.2003.01910.x
RkJQdWJsaXNoZXIy MjQ4ODYzNA==