TGMB_2025v15n3

Tree Genetics and Molecular Breeding 2025, Vol.15, No.3, 89-97 http://genbreedpublisher.com/index.php/tgmb 96 Lin M., Wang S., Liu Y., Li J., Zhong H., Zou F., and Yuan D., 2022, Hydrogen cyanamide enhances flowering time in tea oil camellia (Camellia oleifera Abel.), Industrial Crops and Products, 176: 114313. https://doi.org/10.1016/j.indcrop.2021.114313 Liu C.C., 2024, Interaction between tea tree root probiotics and tea yellowing disease, Journal of Tea Science Research, 14(1): 10-18. Liu F., Wang Y., Ding Z., Zhao L., Xiao J., Wang L., and Ding S., 2017, Transcriptomic analysis of flower development in tea (Camellia sinensis (L.)), Gene, 631: 39-51. https://doi.org/10.1016/j.gene.2017.08.013 Liu Y., Dreni L., Zhang H., Zhang X., Li N., Zhang K., Di T., Wang L., Yang Y., Hao X., and Wang X., 2022, A tea plant (Camellia sinensis) FLOWERING LOCUS C-like gene, CsFLC1, is correlated to bud dormancy and triggers early flowering in Arabidopsis, International Journal of Molecular Sciences, 23(24): 15711. https://doi.org/10.3390/ijms232415711 Liu Y., Hao X., Lu Q., Zhang W., Zhang H., Wang L., Yang Y., Xiao B., and Wang X., 2020a, Genome-wide identification and expression analysis of flowering-related genes reveal putative floral induction and differentiation mechanisms in tea plant (Camellia sinensis), Genomics, 112(3): 2318-2326. https://doi.org/10.1016/j.ygeno.2020.01.003 Liu Y., Pang D., Tian Y., Li Y., Jiang H., Sun Y., Xia L., and Chen L., 2020b, Comparative transcriptomic analysis of the tea plant (Camellia sinensis) reveals key genes involved in pistil deletion, Hereditas, 157: 39. https://doi.org/10.1186/s41065-020-00153-x Lubanga N., Massawe F., Mayes S., Gorjanc G., and Bančič J., 2022, Genomic selection strategies to increase genetic gain in tea breeding programs, The Plant Genome, 16(1): e20282. https://doi.org/10.1002/tpg2.20282 Mukhopadhyay M., Mondal T., and Chand P., 2015, Biotechnological advances in tea (Camellia sinensis [L.] O. Kuntze): a review, Plant Cell Reports, 35: 255-287. https://doi.org/10.1007/s00299-015-1884-8 Naik Y., Bahuguna R., García-Caparrós P., Zwart R., Reddy M., Mir R., Jha U., Fakrudin B., Pandey M., Challabathula D., Kumar V., Reddy U., Venkata C., Kumar S., Mendu V., Prasad P., Punnuri S., Varshney R., and Thudi M., 2025, Exploring the multifaceted dynamics of flowering time regulation in field crops: insight and intervention approaches, The Plant Genome, 18(2): e70017. https://doi.org/10.1002/tpg2.70017 Ramakrishnan M., Sudhama V., and Rajanna L., 2023, A review on the genome-based approaches for the development of stress and climate resilient tea crops, Plant Science Today, 9(sp3): 105-109. https://doi.org/10.14719/pst.1758 Ranatunga M., 2019, Advances in tea [Camellia sinensis (L.) O. Kuntze] breeding, In: Al-Khayri J., Jain S., and Johnson D. (eds.), Advances in plant breeding strategies: nut and beverage crops, Springer, Cham, Switzerland, pp.517-565. https://doi.org/10.1007/978-3-030-23112-5_13 Riboni M., Test A., Galbiati M., Tonelli C., and Conti L., 2014, Environmental stress and flowering time, Plant Signaling and Behavior, 9(7): e29036. https://doi.org/10.4161/psb.29036 Shi Y., Jiang X., Chen L., Li W., Lai S., Fu Z., Liu Y., Qian Y., Gao L., and Xia T., 2021, Functional analyses of flavonol synthase genes from Camellia sinensis reveal their roles in anther development, Frontiers in Plant Science, 12: 753131. https://doi.org/10.3389/fpls.2021.753131 Sun L., Wang Y., Ding Z., and Liu F., 2019, The dynamic changes of catechins and related genes in tea (Camellia sinensis) flowers, Acta Physiologiae Plantarum, 41: 30. https://doi.org/10.1007/s11738-019-2822-0 Tai Y., Liu C., Yu S., Yang H., Sun J., Guo C., Huang B., Liu Z., Yuan Y., Xia E., Wei C., and Wan X., 2018, Gene co-expression network analysis reveals coordinated regulation of three characteristic secondary biosynthetic pathways in tea plant (Camellia sinensis), BMC Genomics, 19: 616. https://doi.org/10.1186/s12864-018-4999-9 Tang J., Chen Y., Huang C., Li C., Feng Y., Wang H., Ding C., Li N., Wang L., Zeng J., Yang Y., Hao X., and Wang X., 2023, Uncovering the complex regulatory network of spring bud sprouting in tea plants: insights from metabolic, hormonal, and oxidative stress pathways, Frontiers in Plant Science, 14: 1263606. https://doi.org/10.3389/fpls.2023.1263606 Tian Y., Chen Z., Jiang Z., Huang X., Zhang L., Zhang Z., and Sun P., 2021, Effects of plant growth regulators on flower abscission and growth of tea plant Camellia sinensis (L.) O. Kuntze, Journal of Plant Growth Regulation, 41: 1161-1173. https://doi.org/10.1007/s00344-021-10365-8 Wang H., He S., Ding Z., Wang Y., Li N., Hao X., Wang L., Yang Y., and Qian W., 2022, Genome-wide identification of the PMEI gene family in tea plant and functional analysis of CsPMEI2 and CsPMEI4 through ectopic overexpression, Frontiers in Plant Science, 12: 807514. https://doi.org/10.3389/fpls.2021.807514 Wang J., 2014, Regulation of flowering time by the miR156-mediated age pathway, Journal of Experimental Botany, 65(17): 4723-4730. https://doi.org/10.1093/jxb/eru246 Wang J., Wang Q., Gao J., Lei Y., Zhang J., Zou J., Lu Z., Li S., Lei N., Dhungana D., Ma Y., Tang X., Yang F., and Yang W., 2025, Genetic regulatory pathways of plant flowering time affected by abiotic stress, Plant Stress, 15: 100747. https://doi.org/10.1016/j.stress.2025.100747

RkJQdWJsaXNoZXIy MjQ4ODYzNA==