TGMB_2025v15n2

Tree Genetics and Molecular Breeding 2025, Vol.15, No.2, 62-69 http://genbreedpublisher.com/index.php/tgmb 68 Castellarin S., Pfeiffer A., Sivilotti P., Degan M., Peterlunger E., and Gaspero G., 2007, Transcriptional regulation of anthocyanin biosynthesis in ripening fruits of grapevine under seasonal water deficit, Plant, Cell and Environment, 30(11): 1381-1399. https://doi.org/10.1111/j.1365-3040.2007.01716.x Deluc L., Bogs J., Walker A., Ferrier T., Décendit A., Mérillon J., Robinson S., and Barrieu F., 2008, The transcription factor VvMYB5b contributes to the regulation of anthocyanin and proanthocyanidin biosynthesis in developing grape berries, Plant Physiology, 147(4): 2041-2053. https://doi.org/10.1104/pp.108.118919 Domingos S., Fino J., Paulo O., Oliveira C., and Goulao L., 2016, Molecular candidates for early-stage flower-to-fruit transition in stenospermocarpic table grape (Vitis vinifera L.) inflorescences ascribed by differential transcriptome and metabolome profiles, Plant Science, 244: 40-56. https://doi.org/10.1016/j.plantsci.2015.12.009 Grimplet J., Tello J., Laguna N., and Ibáñez J., 2017, Differences in flower transcriptome between grapevine clones are related to their cluster compactness, fruitfulness, and berry size, Frontiers in Plant Science, 8: 632. https://doi.org/10.3389/fpls.2017.00632 Huang H., Zhao X., Xiao Q., Hu W., Wang P., Luo Y., Xia H., Lin L., Lv X., Liang D., and Wang J., 2023, Identification of key genes induced by different potassium levels provides insight into the formation of fruit quality in grapes, International Journal of Molecular Sciences, 24(2): 1218. https://doi.org/10.3390/ijms24021218 Huang T., Yu D., and Wang X., 2021, VvWRKY22 transcription factor interacts with VvSnRK1.1/VvSnRK1.2 and regulates sugar accumulation in grape, Biochemical and Biophysical Research Communications, 554: 193-198. https://doi.org/10.1016/j.bbrc.2021.03.092 Lecourieux F., Kappel C., Lecourieux D., Serrano A., Torres E., Arce-Johnson P., and Delrot S., 2014, An update on sugar transport and signalling in grapevine, Journal of Experimental Botany, 65(3): 821-832. https://doi.org/10.1093/jxb/ert394 Lecourieux F., Lecourieux D., Vignault C., and Delrot S., 2009, A sugar-inducible protein kinase, VvSK1, regulates hexose transport and sugar accumulation in grapevine cells, Plant Physiology, 152(2): 1096-1106. https://doi.org/10.1104/pp.109.149138 Li Y., Zhang S., Dong R., Wang L., Yao J., Nocker S., and Wang X., 2019, The grapevine homeobox gene VvHB58 influences seed and fruit development through multiple hormonal signaling pathways, BMC Plant Biology, 19: 523. https://doi.org/10.1186/s12870-019-2144-9 Malnoy M., Viola R., Jung M., Koo O., Kim S., Kim J., Velasco R., and Kanchiswamy C., 2016, DNA-free genetically edited grapevine and apple protoplast using CRISPR/Cas9 ribonucleoproteins, Frontiers in Plant Science, 7: 1904. https://doi.org/10.3389/fpls.2016.01904 Medici A., Laloi M., and Atanassova R., 2014, Profiling of sugar transporter genes in grapevine coping with water deficit, FEBS Letters, 588(21): 3989-3997. https://doi.org/10.1016/j.febslet.2014.09.016 Météier E., Camera S., Goddard M., Laloue H., Mestre P., and Chong J., 2019, Overexpression of the VvSWEET4 transporter in grapevine hairy roots increases sugar transport and contents and enhances resistance to Pythium irregulare, a soilborne pathogen, Frontiers in Plant Science, 10: 884. https://doi.org/10.3389/fpls.2019.00884 Najafi S., Bertini E., D’Incà E., Fasoli M., and Zenoni S., 2022, DNA-free genome editing in grapevine using CRISPR/Cas9 ribonucleoprotein complexes followed by protoplast regeneration, Horticulture Research, 10(1): uhac240. https://doi.org/10.1093/hr/uhac240 Osakabe Y., Liang Z., Ren C., Nishitani C., Osakabe K., Wada M., Komori S., Malnoy M., Velasco R., Poli M., Jung M., Koo O., Viola R., and Kanchiswamy C., 2018, CRISPR-Cas9-mediated genome editing in apple and grapevine, Nature Protocols, 13: 2844-2863. https://doi.org/10.1038/s41596-018-0067-9 Ren C., Liu Y., Guo Y., Duan W., Fan P., Li S., and Liang Z., 2021, Optimizing the CRISPR/Cas9 system for genome editing in grape by using grape promoters, Horticulture Research, 8: 52. https://doi.org/10.1038/s41438-021-00489-z Ren R., Yue X., Li J., Xie S., Guo S., and Zhang Z., 2020, Coexpression of sucrose synthase and the SWEET transporter, which are associated with sugar hydrolysis and transport, respectively, increases the hexose content in Vitis vinifera L. grape berries, Frontiers in Plant Science, 11: 321. https://doi.org/10.3389/fpls.2020.00321 Rossmann S., Richter R., Sun H., Schneeberger K., Töpfer R., Zyprian E., and Theres K., 2020, Mutations in the miR396 binding site of the growth-regulating factor gene VvGRF4 modulate inflorescence architecture in grapevine, The Plant Journal, 101(5): 1234-1248. https://doi.org/10.1111/tpj.14588 Savoi S., Wong D., Degu A., Herrera J., Bucchetti B., Peterlunger E., Fait A., Mattivi F., and Castellarin S., 2017, Multi-omics and integrated network analyses reveal new insights into the systems relationships between metabolites, structural genes, and transcriptional regulators in developing grape berries (Vitis vinifera L.) exposed to water deficit, Frontiers in Plant Science, 8: 1124. https://doi.org/10.3389/fpls.2017.01124 Tang D., Gallusci P., and Lang Z., 2020, Fruit development and epigenetic modifications, The New Phytologist, 228(3): 839-844. https://doi.org/10.1111/nph.16724 Wan D., Guo Y., Cheng Y., Hu Y., Xiao S., Wang Y., and Wen Y., 2020, CRISPR/Cas9-mediated mutagenesis of VvMLO3 results in enhanced resistance to powdery mildew in grapevine (Vitis vinifera), Horticulture Research, 7: 116. https://doi.org/10.1038/s41438-020-0339-8

RkJQdWJsaXNoZXIy MjQ4ODYzNA==