TGMB_2025v15n1

Tree Genetics and Molecular Breeding 2025, Vol.15, No.1, 1-8 http://genbreedpublisher.com/index.php/tgmb 7 Hurny A., Cuesta C., Cavallari N., Ötvös K., Duclercq J., Dokládal L., Montesinos J., GallemíM., SemerádováH., Rauter T., Stenzel I., Persiau G., Benade F., Bhalearo R., SýkorováE., Gorzsás A., Sechet J., Mouille G., Heilmann I., De Jaeger G., Ludwig-Müller J., and BenkováE., 2020, SYNERGISTIC ON AUXIN AND CYTOKININ 1 positively regulates growth and attenuates soil pathogen resistance, Nature Communications, 11: 2170. https://doi.org/10.1038/s41467-020-15895-5 Husin N., Rahman S., Karunakaran R., and Bhore S., 2018, A review on the nutritional, medicinal, molecular and genome attributes of Durian (Durio zibethinus L.), the King of fruits in Malaysia, Bioinformation, 14: 265-270. https://doi.org/10.6026/97320630014265 Huy T., Hoan N., Thi N., and Khang D., 2023, Advancements in genetic diversity and genome characteristics of durians (Durio spp.), Annual Research and Review in Biology, 38(5): 12-23. https://doi.org/10.9734/arrb/2023/v38i530584 Immanen J., Nieminen K., Smolander O., Kojima M., Serra J., Koskinen P., Zhang J., Elo A., Mähönen A., Street N., Bhalerao R., Paulin L., Auvinen P., Sakakibara H., and Helariutta Y., 2016, Cytokinin and auxin display distinct but interconnected distribution and signaling profiles to stimulate cambial activity, Current Biology, 26: 1990-1997. https://doi.org/10.1016/j.cub.2016.05.053 Iqbal Z., Iqbal M., Sangpong L., Khaksar G., Sirikantaramas S., and Buaboocha T., 2021, Comprehensive genome-wide analysis of calmodulin-binding transcription activator (CAMTA) in Durio zibethinus and identification of fruit ripening-associated DzCAMTAs, BMC Genomics, 22: 743. https://doi.org/10.1186/s12864-021-08022-1 Khaksar G., and Sirikantaramas S., 2020, Auxin response factor 2A is part of the regulatory network mediating fruit ripening through auxin-ethylene crosstalk in durian, Frontiers in Plant Science, 11: 543747. https://doi.org/10.3389/fpls.2020.543747 Khaksar G., Kasemcholathan S., and Sirikantaramas S., 2024, Durian (Durio zibethinus L.): nutritional composition, pharmacological implications, value-added products, and omics-based investigations, Horticulturae, 10(4): 342. https://doi.org/10.3390/horticulturae10040342 Khaksar G., Sangchay W., Pinsorn P., Sangpong L., and Sirikantaramas S., 2019, Genome-wide analysis of the Dof gene family in durian reveals fruit ripening-associated and cultivar-dependent Dof transcription factors, Scientific Reports, 9: 12109. https://doi.org/10.1038/s41598-019-48601-7 Li B., Bao R., Shi Y., Grierson D., and Chen K., 2024, Auxin response factors: important keys for understanding regulatory mechanisms of fleshy fruit development and ripening, Horticulture Research, 11(10): uhae209. https://doi.org/10.1093/hr/uhae209 Lin W., 2020, Designed manipulation of the brassinosteroid signal to enhance crop yield, Frontiers in Plant Science, 11: 854. https://doi.org/10.3389/fpls.2020.00854 Liu M., Ma Z., Zheng T., Wang J., Huang L., Sun W., Zhang Y., Jin W., Zhan J., Cai Y., Tang Y., Wu Q., Tang Z., Bu T., Li C., Chen H., and Zhao G., 2018b, The potential role of auxin and abscisic acid balance and FtARF2 in the final size determination of Tartary buckwheat fruit, International Journal of Molecular Sciences, 19(9): 2755. https://doi.org/10.3390/ijms19092755 Liu S., Zhang Y., Feng Q., Qin L., Pan C., Lamin-Samu A., and Lu G., 2018a, Tomato AUXIN RESPONSE FACTOR 5 regulates fruit set and development via the mediation of auxin and gibberellin signaling, Scientific Reports, 8: 2971. https://doi.org/10.1038/s41598-018-21315-y Nawae W., Naktang C., Charoensri S., U-Thoomporn S., Narong N., Chusri O., Tangphatsornruang S., and Pootakham W., 2023, Resequencing of durian genomes reveals large genetic variations among different cultivars, Frontiers in Plant Science, 14: 1137077. https://doi.org/10.3389/fpls.2023.1137077 Ngoc N., Dang L., Ly L., Thao P., and Hung N., 2024, Use of the diagnosis and recommendation integrated system (DRIS) for determining the nutritional balance of durian cultivated in the Vietnamese Mekong delta, Horticulturae, 10(6): 561. https://doi.org/10.3390/horticulturae10060561 Reyes-Olalde J., Zúñiga-Mayo V., Serwatowska J., Montes R., Lozano-Sotomayor P., Herrera-Ubaldo H., González-Aguilera K., Ballester P., Ripoll J., Ezquer I., Paolo D., Heyl A., Colombo L., Yanofsky M., Ferrándiz C., Marsch-Martínez N., and De Folter S., 2017, The bHLH transcription factor SPATULA enables cytokinin signaling, and both activate auxin biosynthesis and transport genes at the medial domain of the gynoecium, PLoS Genetics, 13(4): e1006726. https://doi.org/10.1371/journal.pgen.1006726 Santoso P., Pancoro A., Suhandono S., and Aryantha I., 2017, Development of simple-sequence repeats markers from durian (Durio zibethinus Murr. cultv. Matahari) genomic library, Agrivita: Journal of Agricultural Science, 39: 257-265. https://doi.org/10.17503/agrivita.v39i3.1171 Sharif R., Su L., Chen X., and Qi X., 2022, Hormonal interactions underlying parthenocarpic fruit formation in horticultural crops, Horticulture Research, 9: uhab024. https://doi.org/10.1093/hr/uhab024 Su L., Bassa C., Audran C., Mila I., Chéniclet C., Chevalier C., Bouzayen M., Roustan J., and Chervin C., 2014, The auxin Sl-IAA17 transcriptional repressor controls fruit size via the regulation of endoreduplication-related cell expansion, Plant and Cell Physiology, 55(11): 1969-1976. https://doi.org/10.1093/pcp/pcu124

RkJQdWJsaXNoZXIy MjQ4ODYzNA==