TGMB_2024v14n6

Tree Genetics and Molecular Breeding 2024, Vol.14, No.6, 295-303 http://genbreedpublisher.com/index.php/tgmb 302 Forcada F., Guajardo V., Chin-Wo S., and Moreno M., 2019, Association mapping analysis for fruit quality traits in Prunus persica using SNP markers, Frontiers in Plant Science, 9: 2005. https://doi.org/10.3389/fpls.2018.02005 PMid:30705685 PMCid:PMC6344403 García-Gómez B., Salazar J., Dondini L., Martínez-Gómez P., and Ruiz D., 2019, Identification of QTLs linked to fruit quality traits in apricot (Prunus armeniaca L.) and biological validation through gene expression analysis using qPCR, Molecular Breeding, 39: 28. https://doi.org/10.1007/s11032-018-0926-7 Kenis K., Keulemans J., and Davey M., 2008, Identification and stability of QTLs for fruit quality traits in apple, Tree Genetics & Genomes, 4: 647-661. https://doi.org/10.1007/s11295-008-0140-6 Khan D., Liu H., Khokhar A.A., Hussain M.A., Lv W., Zaman Q.U., and Wang H.F., 2024, Functional characterization of MATE gene family under abiotic stresses and melatonin-mediated tolerance in dragon fruit (Selenicereus undatus L.), Plant Stress, 11: 100300. https://doi.org/10.1016/j.stress.2023.100300 Kumar R., Saini D., Kumar M., Priyanka V., Akhatar J., Kaushik D., Sharma A., Dhanda P., and Kaushik P., 2022, Revealing the genetic architecture of yield-related and quality traits in Indian mustard [Brassica juncea (L.) Czern. and Coss.] using meta-QTL analysis, Agronomy, 12(10): 2442. https://doi.org/10.3390/agronomy12102442 Lin P., Chai J., Wang A., Zhong H., and Wang K., 2024, high-density genetic map construction and quantitative trait locus analysis of fruit- and oil-related traits in Camellia oleifera based on double digest restriction site-associated DNA sequencing, International Journal of Molecular Sciences, 25(16): 8840. https://doi.org/10.3390/ijms25168840 PMid:39201527 PMCid:PMC11354348 Lopez-Nieves S., Yang Y., Timoneda A., Wang M., Feng T., Smith S.A., Brockington S.F., and Maeda H.A., 2018, Relaxation of tyrosine pathway regulation underlies the evolution of betalain pigmentation in Caryophyllales, New Phytologist, 217(2): 896-908. https://doi.org/10.1111/nph.14822 PMid:28990194 Maan S., Brar J., Mittal A., Gill M., Arora N., Sohi H., Chhuneja P., Dhillon G., Singh N., and Thakur S., 2023, Construction of a genetic linkage map and QTL mapping of fruit quality traits in guava (Psidium guajava L.), Frontiers in Plant Science, 14: 1123274. https://doi.org/10.3389/fpls.2023.1123274 PMid:37426984 PMCid:PMC10324979 Morillo A., Mora M., and Morillo Y., 2022, Analysis of the genetic diversity of Dragon fruit based on ISSR markers in Colombia, Brazilian Journal of Biology, 82: e256451. https://doi.org/10.1590/1519-6984.256451 PMid:35081251 Rifat T., Khan K., and Islam M., 2019, Genetic diversity in dragon fruit (Hylocereus sp) germplasms revealed by RAPD marker, Journal of Animal & Plant Sciences, 29(3): 809-818. Saini D., Srivastava P., Pal N., and Gupta P., 2021, Meta-QTLs, ortho-meta-QTLs and candidate genes for grain yield and associated traits in wheat (Triticum aestivumL.), Theoretical and Applied Genetics, 135: 1049-1081. https://doi.org/10.1007/s00122-021-04018-3 PMid:34985537 Salazar J., Pacheco I., Zapata P., Shinya P., Ruiz D., Martínez-Gómez P., and Infante R., 2020, Identification of loci controlling phenology, fruit quality and post-harvest quantitative parameters in Japanese plum (Prunus salicina Lindl.), Postharvest Biology and Technology, 169: 111292. https://doi.org/10.1016/j.postharvbio.2020.111292 Tao J., Qiao G., Wen X., Gao G., Liu T., Peng Z.J., Cai Y.Q., Chen N., Yan F.X., and Zhang B.X., 2014, Characterization of genetic relationship of dragon fruit accessions (Hylocereus spp.) by morphological traits and ISSR markers, Scientia Horticulturae, 170: 82-88. https://doi.org/10.1016/j.scienta.2014.03.006 Tel-Zur N., 2022, Breeding an underutilized fruit crop: a long-term program for Hylocereus, Horticulture Research, 9: uhac078. https://doi.org/10.1093/hr/uhac078 PMid:35707296 PMCid:PMC9189603 Zaman Q.U., Liu H., Nazir M.F., Wang G., Garg V., Ikram M., Raza A., Lv W., Khan D., Khokhar A.A., Zhang Y., Chitikineni A., Usman B., Cui J., Yang X., Zuo S., Liu P., Kumar S., Guo M., Zhu Z.X., Dwivedi G., Qin Y.H., Varshney R.K., and Wang H.F., 2024, Chromosome-level genome assembly of autotetraploid Selenicereus megalanthus and gaining genomic insights into the evolution of trait patterning in diploid and polyploid pitaya species, bioRxiv, (2024): 2024-06. https://doi.org/10.1101/2024.06.23.600268 Zaman Q.U., Khan L.U., Hussain M.A., Ali A., Liu H., Khokhar A.A., Khan D., and Wang H.F., 2023, Characterizing the HMA gene family in dragon fruit (Selenicereus undatus L.) and revealing their response to multifactorial stress combinations and melatonin-mediated tolerance, South African Journal of Botany, 163: 145-156. https://doi.org/10.1016/j.sajb.2023.10.039 Zhao Z., Wang L., Chen J., Zhang N., Zhou W., and Song Y., 2024, Altitudinal variation of dragon fruit metabolite profiles as revealed by UPLC-MS/MS-based widely targeted metabolomics analysis, BMC Plant Biology, 24: 344. https://doi.org/10.1186/s12870-024-05011-w

RkJQdWJsaXNoZXIy MjQ4ODYzMg==